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Hybrid problem : both continuous and discrete-time problem

Motivation : Stability of sampled-data systems

In a realistic case,

Problems to solve:

•To ensure the stability of the process;

•Provide less convervative conditions to obtain an accurate upper-bound of T



Consider a linear system of the form:

What kind of sampling?

•Periodic

•Aperiodic (asynchronous)

find

A and B can be constant, uncertain,…

Motivation

Application to the stabilization problem
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2.  Review of existing papers

A) An input delay approach

Sampled-data signal
(here with uniform sampling)

Delayed signal with

Interesting idea…
Mikheev et al. 88, Sobolev et al. 89. Aström et al. 92 . 



Dependence on the bounds of the sampling period (possible to consider input delay)
Special case for TDS :

Th 1: [Fridman et al, Auto. 2004]

Motivations:
1.Holds for both periodic
and aperiodic samplings
and also additional input
delay

2.Linear wrt. the system 
parameters A and B
(TV systems, param. 
unc. and sat.)

but what about the conservatism??

2.  Review of existing papers

A) An input delay approach



Consider the following example:

1.729Theoretical bounds

0.8696Theorem 1 (aperiodic)

TmaxStability under periodic
samplings

Considerable conservatism
Take into account aperiodic sampling
and « non linearities » (saturation)

Where does it come from?

Theorem 1 is not only dedicated to sampled-data systems
but also to systems with any input delays (i.e. constant  delay) 

2.  Review of existing papers

A) An input delay approach



1) An input delay approach
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and, for h = cste ∈ [0,1] iff (red area)

is asymptotically stable iff (yellow area) :
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stable h(t)<1 - unstable h=cte<1

unstable h(t)<1 - stable h=cte<1

No equivalence between delay and sampling

Requires more accurate analysis

2.  Review of existing papers



2) Small gain theorem approaches

1.365Mirkin, IEEE TAC 2007
(small gain theorem)

1.635Fujioka, Automatica, 2009 (Th.2)
(Small gain theorem)

0.869Theorem 1

TmaxStability under aperiodic
samplings

2.  Review of existing papers



3) Impulse systems appraoch
Improvement of the input delay approach

1.1137Theorem 2 (aperiodic) 

0.8696Theorem 1 (periodic or not)

1.729Theoretical bounds

1.3277Theorem 2 (periodic)

TmaxStability conditions

Better but still
conservative

Th 2: [Nagahshtabrizi, SCL. 2008]

2.  Review of existing papers



Definition of a more appropriate piecewise continuous L KF

3.  Main result

We introduce



Same type of LKF:

Extensions:
i) Aperiodic sampling
periods : Using a linearity
argument wrt. T

ii) Polytopic type of 
uncertainties (Constant 
or T-V)

1.1137 & 1.3277Theorem 2 (aperiodic & periodic)

0.8696Theorem 1 (periodic or not)

1.729Theoretical bounds

1.719Theorem 3 (aperiodic & periodic) (similar to [Fridman, Auto.10])

τmStability conditions

Theorem 3

3.  Main contributions : asymptotic stability



Proof of Theorem 3:
Consider

V is continuous for periodic samplings and discontinuous but decreasing
for aperiodic samplings. The differentiation leads to

Noting that for all N:

We obtain

where

As                is linear with respect to        , the conditions                    and
ensure that

3.  Main contributions : asymptotic stability



3.  Main contributions : Extension to exponential stability

Theorem 4

Sketch of the proof:
Ensure that

With an appropriate
function

Extensions:
i) Aperiodic sampling periods: 
By a linearity argument wrt. T

ii)     can be positive or 
negative, allowing estimating
the divergence rate



3.  Main contributions : Reduction of conservatism

Additionnal conditions to the LMI variables

Theorem4

Theorem5

Based on the same functional and the same LMI

Similar to [Fridman, Automatica 2010]

Theorem6

Similar to [Fridman, Automatica 2010]



4. Examples

4

5

6

1.720Theorem 6 (aperiodic & periodic)

1.695Fridman, Automatica 2010

1.719Theorem 4&5 (aperiodic & periodic)

1.1137 & 1.3277Theorem 2 (aperiodic & periodic) [Nagahshtabrizi, 2008]

0. 8696Theorem 1 (periodic or not) [Fridman et al. 2004]

1.729Theoretical bounds

TAsymptotic stability



4. Examples

4

5

6

2.53 & 2.03Liu et al. 2009, Fridman 2010 (aperiodic & periodic)

2.51Theorem 5&6 (aperiodic & periodic)

1.99Theorem 4 (aperiodic & periodic)

1.28 & 1.61Theorem 2 (aperiodic & periodic) [Nagahshtabrizi, 2008]

0. 99Theorem 1 (periodic or not) [Fridman et al. 2004]

~3.2Theoretical bounds

TAsymptotic stability



3.  Example : uncertain system

[Fridman et al, Auto, 2004], [Nagahshtabrizi, SCL. 20 08]:

0.44 & 0.46Theorem 2 (aperiodic & periodic)

0.35Theorem 1 (periodic or not)

0.60 & 0.70Theorem 3 (aperiodic & periodic) [Liu et al, TDS’09]

τmStability conditions



4. Conclusion

Contribution:
• Novel and less conservative stability conditions for sampled data systems;
• Estimation of the convergence rate of sampled-data systems
• Stability of systems with uncertainties (Const. or TV)

On going work
• Precise the case of aperiodic sampling
[submitted to Automatica]

•Include additional input delays (NCS) 
[submitted to CDC’10 and Necsys’10]

•Systems with several periods
(including packet losses) 
[submitted to Automatica]

Discrete Lyap. Th. Cont. Lyap. Th.


