Réunion du SARParis, 07/05/2010

Article présenté à **IFAC TDS'10**, (7-9/06/10) Prague, Rep Tchèque

Exponential stability and stabilization of sampled-data systems with a time-varying period

Alexandre SeuretChercheur CNRS, Equipe-Projet NeCSGIPSA-Lab, Grenoble, France

Motivation : Stability of sampled-data systems

Hybrid problem : both ^continuous and discrete-time problem

Problems to solve:

•**To ensure the stability of the process;**

•**Provide less convervative conditions to obtain an accurate upper-bound of T**

Application to the stabilization problem

Consider a linear system of the form:

$$
\dot{x}(t) = Ax(t) + Bu(t) \qquad \text{A and } \text{B can be constant, uncertain,...}
$$

$$
u(t) = Kx(t_k), \quad t_k \le t < t_{k+1}
$$

What kind of sampling?

•**Periodic**

•**Aperiodic (asynchronous)**

Outline

1. A time-delay modelling for sampled input

2. Review of existing results:

- Time-delay approach for periodic and aperiodic samplings \bullet
- Small gain and robust approaches
- \bullet Impulsive system approach
- **3. Asymptotic Stability**
- **4. Exponential Stability and stabilization**
- **5. Examples**
- **6. Conclusion**

A) An input delay approach

Interesting idea…

Mikheev et al. 88, Sobolev et al. 89. Aström et al. 92 .

2. Review of existing papersA) An input delay approach $\leq \tau_{min} < \tau(t) < \tau_{max}$ 0.8 0.6 0.4 0.2 Ω -0.2 ਤ ਛ $\overline{4.5}$

Dependence on the bounds of the sampling period (possible to consider input delay) **Special case for TDS** : $\dot{\tau}(t) = 1$

Th 1: [Fridman et al, Auto. 2004]

For a given gain K , the closed-loop system is asymptotically stabl, for all samplings whose period is less than τ_{max} , if there exist $n \times n$ matrices $0 < P_1$, P_2, P_3, Z_1, Z_2, Z_3 and $R > 0$ that satisfy: $\Psi_1 < 0$, and $\begin{bmatrix} R & [0 K^T B^T] P \\ * & Z \end{bmatrix} \geq 0$, where $P=\left[\begin{array}{cc} P_1 & 0 \ P_2 & P_3 \end{array}\right],\quad Z=\left[\begin{array}{cc} Z_1 & Z_2 \ * & Z_3 \end{array}\right],\quad \Psi_1=\Psi_0+\tau_2Z+\left[\begin{array}{cc} 0 & 0 \ 0 & \tau_2R \end{array}\right],$ $\Psi_0 = P^T \left[\begin{array}{cc} 0 & I_n \\ A + BK & -I_n \end{array} \right] + \left[\begin{array}{cc} 0 & I_n \\ A + BK & -I_n \end{array} \right]^T P.$ $\left(V(t) = x^T(t)P_1x(t) + \int_{-\tau_2}^0 \int_{t+\theta}^t x^T(s)R\bar{x}(s)dsd\theta\right)$

Motivations:

1.Holds for both periodic and aperiodic samplings and also additional input delay

2.Linear wrt. the system parameters A and B (TV systems, param. unc. and sat.)

but what about the conservatism??

A) An input delay approach

Consider the following example:

$$
\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & -0.1 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ -0.375 & -1.15 \end{bmatrix} x(t_k)
$$

Considerable conservatism Take into account aperiodic samplingand « non linearities » (saturation)

Where does it come from?

Theorem 1 is not only dedicated to sampled-data systemsbut also to systems with any input delays (i.e. constant delay)

1) An input delay approach

No equivalence between delay and sampling

Requires more accurate analysis

П

2) Small gain theorem approaches

3) Impulse systems appraoch

Improvement of the input delay approach

J

Th 2: [Nagahshtabrizi, SCL. 2008]

The system is asymptotically stable if there exist P , R , X_1 positive definite matrices and a matrice N that satisfy:

$$
M_1+\tau_{max}M_2<0\,\,\text{and}\,\,\left[\begin{array}{cc} M_1&\tau_{max}N\\ *&-\tau_{max}R\end{array}\right]
$$

where

$$
\begin{array}{c}\n\bar{F} = [A \quad BK]; \\
M_1 = 2[P \ 0]^T \bar{F} - [I \ -I]^T (X_1[I \ -I] + 2X_2[0 \ I]) - 2N[I \ -I] + \tau_{max} \bar{F}^T R \bar{F} \\
M_2 = 2 \bar{F}^T (X_1[I \ -I] + X_2[0 \ I])\n\end{array}
$$

$$
V'(t) = x^T(t)Px(t) + \int_{t_k}^t (\tau_{max} - t + s)\dot{x}^T(s)R\dot{x}(s)ds + (\tau_{max} - \tau(t))(x(t) - x(t_k))^T X_1(x(t) - x(t_k)) + 2(\tau_{max} - \tau(t))(x(t) - x(t_k))^T X_2x(t_k) \qquad \qquad (\dot{\tau}(t) = 1)
$$

Better but still conservative

3. Main result

Definition of a more appropriate piecewise continuous LKF

$$
V'(t) = x^{T}(t)Px(t) + \int_{t_k}^{t} (\tau_{max} - t + s)\dot{x}^{T}(s)R\dot{x}(s)ds + (\tau_{max} - \tau(t))(x(t) - x(t_k))^{T}X_{1}(x(t) - x(t_k)) + 2(\tau_{max} - \tau(t))(x(t) - x(t_k))^{T}X_{2}x(t_k)
$$

We introduce
$$
t_k
$$

\n
$$
V'(t) = x^T(t)Px(t) + \int_{t_k}^t \overbrace{(\tau_{max} - (t - t_k))}^{\tau_{max} - \tau(t)} + \overbrace{(s - t_k))}^{\tau(s)} \dot{x}^T(s)R\dot{x}(s)ds
$$
\n
$$
+ (\tau_{max} - \tau(t))(x(t) - x(t_k))^T X_1(x(t) - x(t_k))
$$
\n
$$
+ 2(\tau_{max} - \tau(t))(x(t) - x(t_k))^T X_2x(t_k)
$$

$$
\sum V'(t) = V(t) + \int_{t_k}^t \tau(s) \dot{x}^T(s) R \dot{x}(s) ds \to V'(t) \ge V(t)
$$

$$
\dot{V}'(t) = \dot{V}(t) + \tau(t) \dot{x}^T(t) R \dot{x}(t) \to \dot{V}'(t) \ge \dot{V}(t)
$$

3. Main contributions : asymptotic stability

Theorem 3

Assume that there exist symmetric positive definite matrices P, R and $S_1 \in$ $R^{n \times n}$ and two matrices $S_2 \in R^{n \times n}$ and $N \in R^{2n \times n}$ that satisfy

$$
\Pi_1+T\Pi_2<0, \qquad \left[\begin{array}{cc} \Pi_1 & T N \\ * & -TR \end{array}\right]<0,
$$

where

$$
\Pi_1 = 2M_1^T P M_0 - M_3^T S_1 M_3 - 2M_2^T S_2 M_3 - 2NM_3,
$$

\n
$$
\Pi_2 = M_0^T (RM_0 + 2S_1 M_3 + 2S_2 M_2)
$$

and $M_0 = [A \ A_d], M_1 = [I \ 0], M_2 = [0 \ I], M_3 = [I \ -I].$ The system is thus asymptotically stable for a constant period T .

Same type of LKF:
$$
V(t) = x^{T}(t)Px(t) + (T - \tau(t))\int_{t_k}^{t} \dot{x}^{T}(s)R\dot{x}(s)ds + (T - \tau(t))(x(t) - x(t_k))^{T}(S_{1}(x(t) - x(t_k)) + 2(T - \tau(t))(x(t) - x(t_k))^{T}S_{2}x(t_k)
$$

Proof of Theorem 3:

Consider

$$
V(t)=x^T(t)Px(t)+(T-\tau(t))\int_{t_k}^t \dot{x}^T(s)R\dot{x}(s)ds\\+(T-\tau(t))(x(t)-x(t_k))^TS_1(x(t)-x(t_k))\\+2(T-\tau(t))(x(t)-x(t_k))^TS_2x(t_k)
$$

V is **continuous** for periodic samplings and **discontinuous but decreasing** for aperiodic samplings. The differentiation leads to

$$
\dot{V}(t) = \xi^{T}(t)[2M_{1}PM_{0} - M_{3}^{T}S_{1}M_{3} - 2M_{3}^{T}S_{2}M_{2} + (T - \tau(t))M_{0}^{T}(RM_{0} + 2S_{1}M_{3} + 2S_{2}M_{2})\xi(t) - \int_{t_{k}}^{t} \dot{x}^{T}(s)R\dot{x}(s)ds
$$

Noting that for all $N: \quad -\int_{t_k}^{t} \dot{x}^T(s) R \dot{x}(s) ds \leq \xi^T(t) [-2NM_3 + \tau(t)NR^{-1}N^T] \xi(t),$

 $\forall \tau(t) \in [0 T], \quad \dot{V}(t, x_t) \leq \xi^{T}(t) [\Pi(\tau(t))] \xi(t)$ We obtain

where
$$
\Pi(\tau(t)) = \Pi_1 + [T - \tau(t)]\Pi_2 + \tau(t)(NR^{-1}N^T - \Pi_2)
$$
As $\Pi(\tau(t))$ is **linear** with respect to $\tau(t)$, the conditions $\Pi(0) < 0$ and $\Pi(T) < 0$ ensure that $\forall \tau(t) \in [0, T], \quad V(t, x_t) \leq 0$.

3. Main contributions : Extension to exponential stability

Theorem 4

For a given $\alpha \in R/\{0\}$, assume that there exist symmetric positive definite matrices P, R and $S_1 \in R^{n \times n}$ and two matrices $S_2 \in R^{n \times n}$ and $N \in R^{2n \times n}$ that satisfy

$$
\Pi_1 + f_{\alpha}(T,0)\Pi_2 < 0, \qquad \qquad \begin{bmatrix} \Pi_1 & g_{\alpha}(T,T)N \\ * & -g_{\alpha}(T,T)R \end{bmatrix} < 0,
$$

where

$$
\Pi_1 = 2M_1^TPM_0 - M_3^TS_1M_3 - 2M_2^TS_2M_3 - 2NM_3 + 2\alpha M_1^TPM_1,
$$

\n
$$
\Pi_2 = M_0^T(RM_0 + 2S_1M_3 + 2S_2M_2)
$$

and the same matrices M_0 , M_1 , M_2 and M_3 . The functions f_{α} and g_{α} are

if
$$
\alpha \neq 0
$$
, $f_{\alpha}(T,\tau) = (e^{2\alpha(T-\tau)} - 1)/2\alpha$,
if $\alpha > 0$, $g_{\alpha}(T,\tau) = e^{2\alpha T}(1 - e^{-2\alpha \tau})/2\alpha$,
if $\alpha < 0$, $g_{\alpha}(T,\tau) = (1 - e^{-2\alpha \tau})/2\alpha$, (1)

The system is thus exponentially stable with an exponential decay rate α for a constant period T .

Extensions:

 i) **Aperiodic** sampling periods: By a linearity argument wrt. T

ii) α can be positive or negative, allowing estimatingthe **divergence rate**

Sketch of the proof:

Ensure that With an appropriatefunction

Additionnal conditions to the LMI variables

Based on the same functional and the same LMI

$$
V(t) = x^{T}(t)Px(t) + (T - \tau(t))\int_{t_k}^{t} \dot{x}^{T}(s)R\dot{x}(s)ds + (T - \tau(t))(x(t) - x(t_k))^{T}S_{1}(x(t) - x(t_k)) + 2(T - \tau(t))(x(t) - x(t_k))^{T}S_{2}x(t_k)
$$

$$
\sum \left[\begin{array}{c} \Pi_1 + f_\alpha(T, 0) \Pi_2 < 0, \\ \Pi_1 & g_\alpha(T, T) N \\ * & -g_\alpha(T, T) R \end{array} \right] < 0,
$$

 $P > 0, R > 0$ $S_1 > 0$ $\forall S_2$ **Theorem4**

$$
\implies \qquad V(t) > 0
$$

Theorem5
$$
\Pi_3 = \left[\begin{array}{cc} P + f_\alpha(T,\tau)S_1 & f_\alpha(T,\tau)(S_2-S_1) \\ f_\alpha(T,\tau)(S_2^T-S_1) & f_\alpha(T,\tau)(S_1-S_2-S_2^T) \end{array} \right] > 0, \quad R > 0
$$

Similar to [Fridman, Automatica 2010]
 $V(t) = \xi^T(t) \Pi_3 \xi(t) + f_\alpha(T, \tau) \int_{t_1}^t \dot{x}^T(s) R \dot{x}(s) ds > 0$

Theorem6

Similar to [Fridman, Automatica 2010] $V(t) = \xi^{T}(t)\Pi_{3}\xi(t) + f_{\alpha}(T,\tau)\int_{t_{0}}^{t} \dot{x}^{T}(s)R\dot{x}(s)ds \geq \xi^{T}(t)\Pi_{4}\xi(t) > 0$ **4. Examples**

П

$$
\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & -0.1 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ -0.375 & -1.15 \end{bmatrix} x(t_k)
$$

4. Examples

П

$$
\dot{x}(t) = \begin{bmatrix} -2 & 0 \\ 0 & -0.9 \end{bmatrix} x(t) + \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} x(t_k)
$$

[Fridman et al, Auto, 2004], [Nagahshtabrizi, SCL. 2008]:

$$
\dot{x}(t) = \begin{bmatrix} 1 & 0.5 \\ g_1 & -1 \end{bmatrix} x(t) - \begin{bmatrix} 1+g_2 \\ -1 \end{bmatrix} \begin{bmatrix} 2.6884 \\ 0.6649 \end{bmatrix}^T x(t_k)
$$

where $|g_1| \le 0.1$, and $|g_2| \le 0.3$

4. Conclusion

Contribution:

- Novel and less conservative stability conditions for sampled data systems;
- Estimation of the convergence rate of sampled-data systems
- Stability of systems with uncertainties (Const. or TV)

On going work

 • Precise the case of **aperiodic sampling**[submitted to Automatica]

$$
\Delta V_k = V_{k+1} - V_k = \int_{t_k}^{t_{k+1}} \dot{V}(s)ds
$$

•Include additional **input delays** (NCS) [submitted to CDC'10 and Necsys'10]

$$
\dot{x}(t) = Ax(t) + A_d x(t_k - h_k)
$$

•Systems with **several periods** (including packet losses) [submitted to Automatica]

