On observation of time-delay systems with unknown inputs

G. Zheng, J.-P. Barbot, D. Boutat, T. Floquet, J.-P. Richard

May 7, 2010

Outline

- **1** Observability of nonlinear systems without delays
- **2** Time-delay systems under non-commutative rings
- ³ Observability and Left invertibility for TDS
- ⁴ Canonical form and causal observability
- ⁵ Main theorems
- **6** Non-causal observability
- **⁷** Bibliography

Observability for nonlinear systems without delays

Consider the following nonlinear systems:

$$
\begin{cases}\n\dot{x} = f(x) \\
y = h(x)\n\end{cases}
$$
\nCondition: rank $\begin{pmatrix} dh \\ dL_f h \\ dL_f^2 h \\ \vdots \end{pmatrix} = n$.

UROPE

Observability for nonlinear systems without delays

Consider the following nonlinear systems:

$$
\begin{cases}\n\dot{x} = f(x) \\
y = h(x)\n\end{cases}
$$
\nCondition: $\operatorname{rank}\begin{pmatrix} dh \\ dl_f h \\ dl_f^2 h \\ \vdots \end{pmatrix} = n$. Ex:
$$
\begin{cases}\n\dot{x}_1 = x_1 + x_2 \\
\dot{x}_2 = x_3 + x_1x_2 \\
\dot{x}_3 = x_1^2 + x_2x_3\n\end{cases}
$$
 Calculate the

differentiation of the output:

$$
dy = dx_1
$$

\n
$$
dy = dx_1 + dx_2
$$

\n
$$
dy = (1 + x_2)dx_1 + (1 + x_1)dx_2 + dx_3
$$

Observability for nonlinear systems with delays

$$
\begin{cases}\n\dot{x}_1(t) = x_1(t - \tau) + x_2(t) \\
\dot{x}_2(t) = x_3(t) + x_1(t)x_2(t - 2\tau) \\
\dot{x}_3(t) = x_1^2(t - \tau) + x_3(t) \\
y(t) = x_1(t)\n\end{cases}
$$

Observability for nonlinear systems with delays

 \int \mathcal{L} $\begin{array}{l} \dot{x}_1(t) = x_1(t-\tau) + x_2(t) \ \dot{x}_2(t) = x_3(t) + x_1(t) x_2(t - 2\tau) \ \dot{x}_3(t) = x_1^2(t-\tau) + x_3(t) \ y(t) = x_1(t) \end{array}$

Calculate the differentiation of the output:

$$
dy(t) = dx_1(t)
$$

\n
$$
dy'(t) = dx_1(t - \tau) + dx_2(t)
$$

\n
$$
dy'(t) = x_2(t - 2\tau)dx_1(t) + dx_1(t - 2\tau) + dx_2(t - \tau) + x_1(t)dx_2(t - 2\tau) + dx_3(t)
$$

Quite complicated to be analyzed.

Observability for nonlinear systems with delays

 \int \mathcal{L} $\begin{array}{l} \dot{x}_1(t) = x_1(t-\tau) + x_2(t) \ \dot{x}_2(t) = x_3(t) + x_1(t) x_2(t - 2\tau) \ \dot{x}_3(t) = x_1^2(t-\tau) + x_3(t) \ y(t) = x_1(t) \end{array}$

Calculate the differentiation of the output:

$$
dy(t) = dx_1(t)
$$

\n
$$
dy'(t) = dx_1(t - \tau) + dx_2(t)
$$

\n
$$
dy'(t) = x_2(t - 2\tau)dx_1(t) + dx_1(t - 2\tau) + dx_2(t - \tau) + x_1(t)dx_2(t - 2\tau) + dx_3(t)
$$

Quite complicated to be analyzed. Introduce delay operator δ , then

$$
\begin{array}{rcl}\ndy(t) &=& d\mathbf{x}_1(t) \\
d\dot{y}(t) &=& d(\delta \mathbf{x}_1(t)) + d\mathbf{x}_2(t) = \delta d\mathbf{x}_1(t) + d\mathbf{x}_2(t) \\
d\ddot{y}(t) &=& \delta^2 \mathbf{x}_2(t) d\mathbf{x}_1(t) + d(\delta^2 \mathbf{x}_1(t)) + d(\delta \mathbf{x}_2(t)) + \mathbf{x}_1(t) d(\delta^2 \mathbf{x}_2(t)) + d\mathbf{x}_3(t) \\
&=& \delta^2 \mathbf{x}_2(t) d\mathbf{x}_1(t) + \delta^2 d\mathbf{x}_1(t) + \delta d\mathbf{x}_2(t) + \mathbf{x}_1(t) \delta^2 d\mathbf{x}_2(t) + d\mathbf{x}_3(t) \\
&=& (\delta^2 \mathbf{x}_2 + \delta^2) d\mathbf{x}_1 + (\delta + \mathbf{x}_1 \delta^2) d\mathbf{x}_2 + d\mathbf{x}_3\n\end{array}
$$

Since the coefficients are polynomials of δ , we can try to establish a polynomial ring for TDS, which is not commutative.

 $\sqrt{\textit{INRIA}}$ sentre de recherche 7 / 39

Time-delay systems

Consider the following nonlinear time-delay system:

$$
\begin{cases}\n\dot{x} &= f(x(t - i\tau)) + \sum_{j=0}^{s} g^{j}(x(t - i\tau))u(t - j\tau) \\
y &= h(x(t - i\tau)) \\
&= [h_{1}(x(t - i\tau)), \dots, h_{p}(x(t - i\tau))]^{T} \\
x(t) &= \psi(t), u(t) = \varphi(t), t \in [-s\tau, 0]\n\end{cases}
$$
\n(1)

where $x \in W \subset R^n$ denotes the state variables, $u = [u_1, \ldots, u_m]^T \in R^m$ is the unknown admissible input, $y \in R^p$ is the measurable output. $p \ge m$ and $i \in S_ = \{0, 1, \ldots, s\}$ is a finite set of constant time-delays.

Non-commutative algebraic framework [\[4\]](#page-38-0)

 K : the field of functions of a finite number of the variables from $\{x_i(t - i\tau), i \in [1, n], i \in S_-\}.$ \mathcal{E} : the vector space over \mathcal{K} : $\mathcal{E} = span_{\mathcal{K}} \{ d\xi : \xi \in \mathcal{K} \}$. δ : backward time-shift operator, i.e. $\delta^i \xi(t) = \xi(t-i\tau)$ and

$$
\delta^i(a(t)d\xi(t))=\delta^i a(t)\delta^i d\xi(t)
$$

 $\mathcal{K}(\delta)$: the set of polynomials of the form

$$
a(\delta) = a_0(t) + a_1(t)\delta + \cdots + a_{r_a}(t)\delta^{r_a}, a_i(t) \in \mathcal{K}
$$
 (2)

Addition in $\mathcal{K}(\delta)$ is usual, but the multiplication is given as

$$
a(\delta)b(\delta)=\sum_{k=0}^{r_a+r_b}\sum_{i+j=k}^{i\leq r_b,j\leq r_b}a_i(t)b_j(t-i\tau)\delta^k
$$
 (3)

 \mathbb{Z} *INRIA*

Property

$$
a(\delta) = \delta x_1 \delta, b(\delta) = x_2 + x_1 \delta^2
$$

\n
$$
a(\delta) + b(\delta) = \delta x_1 \delta + x_2 + x_1 \delta^2
$$

\n
$$
a(\delta)b(\delta) = \delta x_1 \delta(x_2 + x_1 \delta^2) = \delta x_1 \delta x_2 \delta + \delta x_1 \delta x_1 \delta^3
$$

\n
$$
b(\delta)a(\delta) = (x_2 + x_1 \delta^2) \delta x_1 \delta = x_2 \delta x_1 \delta + x_1 \delta^3 x_1 \delta^3
$$

 $\mathcal{K}(\delta)$ satisfies the associative law and it is a non-commutative ring (see [\[4\]](#page-38-0)). However, it is proved that the ring $\mathcal{K}(\delta)$ is a left Ore ring [\[2,](#page-38-1) [4\]](#page-38-0), which enables to define the rank of a module over this ring. Let M denote the left module over $\mathcal{K}(\delta)$

$$
\mathcal{M} = \mathsf{span}_{\mathcal{K}(\delta)}\{d\xi, \xi \in \mathcal{K}\}
$$

Time-delay systems under non-commutative rings

With the definition of $\mathcal{K}(\delta)$, [\(1\)](#page-7-0) can be rewritten in a more compact form as follows:

$$
\begin{cases}\n\dot{x} &= f(x,\delta) + \sum_{i=1}^{m} G_i u_i(t) \\
y &= h(x,\delta) \\
x(t) &= \psi(t), u(t) = \varphi(t), t \in [-s\tau, 0]\n\end{cases}
$$
\n(4)

where $f(x, \delta) = f(x(t - i\tau))$ and $h(x, \delta) = h(x(t - i\tau))$ with entries belonging to \mathcal{K} , $\mathcal{G}_i = \sum_{j=0}^s g_i^j$ $j \delta^j$ with entries belonging to $\mathcal{K}(\delta]$. It is assumed that $rank_{\mathcal{K}(\delta]} \frac{\partial h}{\partial x} = p$, which implies that $\left[h_1, \ldots, h_p \right]^T$ are independent functions of x and its backward shifts.

Observability and Left invertibility

Definition

System [\(1\)](#page-7-0) is locally observable if the state $x(t)$ can be expressed as:

$$
x(t) = \alpha(y(t - j\tau), \dots, y^{(k)}(t - j\tau))
$$
\n(5)

for $j \in \mathsf{Z}$ and $k \in \mathsf{Z}^{+}.$ It is locally causally observable if (5) is satisfied for $j \in Z^+$ and $k \in Z^+$, and locally non-causally observable if (5) is satisfied for $j \in \mathbb{Z}$ and $k \in \mathbb{Z}^+$.

Observability and Left invertibility

Definition

System [\(1\)](#page-7-0) is locally observable if the state $x(t)$ can be expressed as:

$$
x(t) = \alpha(y(t - j\tau), \dots, y^{(k)}(t - j\tau))
$$
\n(5)

for $j \in \mathsf{Z}$ and $k \in \mathsf{Z}^{+}.$ It is locally causally observable if (5) is satisfied for $j \in Z^+$ and $k \in Z^+$, and locally non-causally observable if (5) is satisfied for $j \in \mathbb{Z}$ and $k \in \mathbb{Z}^+$.

Definition

The unknown input $u(t)$ can be estimated if it can be written as follows:

$$
u(t) = \beta(y(t - j\tau), \dots, y^{(k)}(t - j\tau))
$$
 (6)

for $j\in\mathsf{Z}$ and $k\in\mathsf{Z}^{+}.$ It can be causally estimated if (6) is satisfied for $j\in Z^+$ and $k\in Z^+,$ and non-causally estimated if (6) is satisfied for $j \in \mathsf{Z}$ and $k \in \mathsf{Z}^{+}$.

Example

$$
\begin{cases}\n\dot{x}_1 = x_2 + \delta x_1, \dot{x}_2 = \delta^2 x_2 - \delta x_3, \\
\dot{x}_3 = \delta x_4 + \delta u_1 + \delta^4 u_2, \dot{x}_4 = \delta u_2 \\
y_1 = x_1, y_2 = \delta x_4\n\end{cases}
$$
\n(7)

A straightforward calculation gives

$$
\begin{cases}\n x_1(t) = y_1(t), x_2(t) = \dot{y}_1(t) - y_1(t - \tau) \\
 x_3(t) = \dot{y}_1(t - \tau) - y_1(t - 2\tau) - \ddot{y}_1(t + \tau) + \dot{y}_1(t) \\
 x_4(t) = y_2(t + \tau)\n\end{cases}
$$

and

$$
\begin{cases}\n u_1(t) = \ddot{y}_1(t) - \dot{y}_1(t-\tau) - \ddot{y}_1(t+2\tau) + \ddot{y}_1(t+\tau) \\
 -y_2(t+\tau) - \dot{y}_2(t-\tau) \\
 u_2(t) = \dot{y}(t+2\tau)\n\end{cases}
$$

INSTITUT NATIONAL

Unimodular matrix and change of coordinate

Definition

(Unimodular matrix) [\[3\]](#page-38-2) Matrix $A \in \mathcal{K}^{n \times n}(\delta]$ is said to be unimodular over $\mathcal{K}(\delta]$ if it has a *left* inverse $\mathcal{A}^{-1}\in \mathcal{K}^{n\times n}(\delta]$, such that $A^{-1}A = I_{n \times n}$.

Unimodular matrix and change of coordinate

Definition

(Unimodular matrix) [\[3\]](#page-38-2) Matrix $A \in \mathcal{K}^{n \times n}(\delta]$ is said to be unimodular over $\mathcal{K}(\delta]$ if it has a *left* inverse $\mathcal{A}^{-1}\in \mathcal{K}^{n\times n}(\delta]$, such that $A^{-1}A = I_{n \times n}$.

Definition

(Change of coordinate) [\[3\]](#page-38-2) For system [\(1\)](#page-7-0), $z = \phi(\delta, x) \in \mathcal{K}^{n \times 1}$ is a causal change of coordinate over K for [\(1\)](#page-7-0) if there exists locally a function $\phi^{-1}\in \mathcal{K}^{n\times 1}$ and some constants $c_1,\cdots,c_n\in N$ such that

$$
diag\{\delta^{c_i}\}x=\phi^{-1}(\delta,z).
$$

The change of coordinate is bicausal over K if $max{c_i} = 0$, i.e. $x = \phi^{-1}(\delta, z).$

Lie derivative for TDS

Let $f(x(t - j\tau))$ and $h(x(t - j\tau))$ for $0 \le j \le s$ respectively be an n and p dimensional vector with entries $f_r \in \mathcal{K}$ for $1 \le r \le n$ and $h_i \in \mathcal{K}$ for $1 \leq i \leq p$. Let

$$
\frac{\partial h_i}{\partial x} = \left[\frac{\partial h_i}{\partial x_1}, \cdots, \frac{\partial h_i}{\partial x_n}\right] \in \mathcal{K}^{1 \times n}(\delta]
$$
(8)

where for $1 \le r \le n$:

$$
\frac{\partial h_i}{\partial x_r} = \sum_{j=0}^s \frac{\partial h_i}{\partial x_r(t - j\tau)} \delta^j \in \mathcal{K}(\delta]
$$

then the Lie derivative for TDS can be defined as follows

$$
L_f h_i = \frac{\partial h_i}{\partial x} (f) \text{ and } L_{G_i} h_i = \frac{\partial h_i}{\partial x} (G_i)
$$

Relative degree for TDS

Definition

(Relative degree) System [\(4\)](#page-10-0) has relative degree (ν_1, \dots, ν_p) in an open set $W \subseteq R^n$ if, for $1 \leq i \leq p$, the following conditions are satisfied :

 $\textbf{1} \text{ for all } x \in W$, $L_{G_j} L_f^r h_i = 0$, for all $1 \leq j \leq m$ and $0 \le r \le \nu_i - 1$:

② there exists $x \in W$ such that $\exists j \in [1,m]$, $L_{G_j} L_f^{\nu_i-1} h_i \neq 0$.

If for $1 \le i \le p$, (1) is satisfied for all $r > 0$, then we set $\nu_i = \infty$.

Observability indices for TDS

Let $\mathcal{F}_k := \mathsf{span}_{\mathcal{K}(\delta)} \left\{ dh, d \mathsf{L}_f h, \cdots, d \mathsf{L}_f^{k-1} h \right\}$ for $1 \leq k \leq n$, satisfying $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_n$ then we define

$$
d_1 = \text{rank}_{\mathcal{K}(\delta)} \mathcal{F}_1
$$
, and $d_k = \text{rank}_{\mathcal{K}(\delta)} \mathcal{F}_k - \text{rank}_{\mathcal{K}(\delta)} \mathcal{F}_{k-1}$

for $2 \leq k \leq n$. Let $k_i = \text{card } \{d_k \geq i, 1 \leq k \leq n\}$ then (k_1,\cdots,k_p) are the observability indices, and \sum p $i=1$ $k_i = n$ since it is assumed that [\(4\)](#page-10-0) is observable with $u = 0$. Reordering, if necessary, the output components of [\(4\)](#page-10-0), such that

$$
rank_{\mathcal{K}(\delta)} \frac{\partial [h, L_f h, \dots, L_f^{n-1} h]^T}{\partial x}
$$

= rank<sub>\mathcal{K}(\delta)} \frac{\partial [h_1, L_f h_1, \dots, L_f^{k_1-1} h_1, \dots, h_p, L_f h_p, \dots, L_f^{k_p-1} h_p]^T}{\partial x}
= k_1 + \dots + k_p = n</sub>

Canonical form and causal observability

Theorem 1

For $1 \leq i \leq p$, denote k_i the observability indices and ν_i the relative degree index for y_i of [\(4\)](#page-10-0), and note $\rho_i = \min{\{\nu_i, k_i\}}$. Then there exists a change of coordinate $\phi(x, \delta) \in \mathcal{K}^{n \times 1}$, such that [\(4\)](#page-10-0) can be transformed into the following form:

$$
\dot{z}_i = A_i z_i + B_i V_i \tag{9}
$$

$$
\dot{\xi} = \alpha(z, \xi, \delta) + \beta(z, \xi, \delta)u\tag{10}
$$

$$
y_i = C_i z_i \tag{11}
$$

where $A_i \in R^{\rho_i \times \rho_i}$ is in the Brounovsky form and

$$
z_{i} = (h_{i}, \cdots, L_{f}^{\rho_{i}-1}h_{i})^{T} \in \mathcal{K}^{\rho_{i} \times 1}, B_{i} = (0, \cdots, 0, 1)^{T} \in \mathcal{R}^{\rho_{i} \times 1}
$$

\n
$$
V_{i} = L_{f}^{\rho_{i}}h_{i}(x, \delta) + \sum_{j=1}^{m} L_{G_{j}}L_{f}^{\rho_{j}-1}h_{i}(x, \delta)u_{j} \in \mathcal{K}, \alpha \in \mathcal{K}^{1 \times 1}
$$

\n
$$
\beta \in \mathcal{K}^{1 \times 1}(\delta] \text{ with } l = n - \sum_{j=1}^{p} \rho_{j}, C_{i} = (1, 0, \cdots, 0) \in \mathcal{R}^{1 \times \rho_{i}}
$$

Moreover if $k_i < \nu_i$, one has $V_i = L_f^{\rho_i} h_i = L_f^{k_i} h_i$.

,

For [\(9\)](#page-19-0), note

$$
H(x,\delta) = \Psi(x,\delta) + \Gamma(x,\delta)u \tag{12}
$$

with

$$
H(x,\delta) = \begin{pmatrix} h_1^{(\rho_1)} \\ \vdots \\ h_p^{(\rho_p)} \end{pmatrix}, \Psi(x,\delta) = \begin{pmatrix} L_f^{\rho_1} h_1 \\ \vdots \\ L_f^{\rho_p} h_p \end{pmatrix}
$$

and

$$
\Gamma(x,\delta) = \left(\begin{array}{ccc} L_{G_1}L_f^{\rho_1-1}h_1 & \cdots & L_{G_m}L_f^{\rho_1-1}h_1 \\ \vdots & \ddots & \vdots \\ L_{G_1}L_f^{\rho_p-1}h_p & \cdots & L_{G_m}L_f^{\rho_p-1}h_p \end{array} \right)
$$

where $H(x,\delta) \in \mathcal{K}^{p \times 1}$, $\Psi(x,\delta) \in \mathcal{K}^{p \times 1}$ and $\Gamma(x,\delta) \in \mathcal{K}^{p \times m}(\delta]$. And for (4) , let denote Φ the observable space from its outputs:

$$
\Phi = \{dh_1, \cdots, dL_f^{\rho_1-1}h_1, \cdots, dh_p, \cdots, dL_f^{\rho_p-1}h_p\}
$$
 (13)

Main theorem

Theorem 2

For system [\(4\)](#page-10-0) with outputs (y_1, \ldots, y_p) and corresponding (ρ_1, \ldots, ρ_p) with $\rho_i = \mathsf{min}\{k_i, \nu_i\}$ where k_i and ν_i are respectively the associated observability indices and the relative degree, if

$$
rank_{\mathcal{K}(\delta)}\Phi=n
$$

where Φ defined in [\(13\)](#page-20-0), then there exists a change of coordinate $\phi(x, \delta)$ such that [\(4\)](#page-10-0) can be transformed into [\(9-](#page-19-0)[11\)](#page-19-1) with $dim\xi = 0$.

Moreover, if the change of coordinate is locally bicausal over K , then the state $x(t)$ of [\(4\)](#page-10-0) is locally causally observable.

For the matrix $\Gamma \in \mathcal{K}^{p \times m}(\delta]$ where $m \leq p$, if $rank_{\mathcal{K}(\delta)}\Gamma = m$, then there exists a matrix $Q \in \mathcal{K}^{p \times p}(\delta]$ such that $Q\Gamma = \begin{bmatrix} \bar{\Gamma} & \bar{\Gamma} \end{bmatrix}$ 0 $\begin{aligned} \begin{cases} \text{ where } \bar{\mathsf{\Gamma}} \in \mathcal{K}^{m \times m}(\delta] \end{cases} \end{aligned}$ has full row rank m. Moreover, if $\bar{\Gamma} \in \mathcal{K}^{m \times m}(\delta]$ is also unimodular over $\mathcal{K}(\delta)$, then the unknown input $u(t)$ of [\(4\)](#page-10-0) can be causally estimated.

Example

$$
\begin{cases}\n\dot{x}_1 = -\delta x_1 + x_2, \dot{x}_2 = -\delta x_3 + u_1 \\
\dot{x}_3 = \delta x_1 + \delta u_1 + u_2, \dot{x}_4 = -x_4 + 2\delta x_4 / 3 \\
y_1 = x_1, y_2 = x_3, y_3 = x_4\n\end{cases}
$$
\n(14)\n
$$
\Rightarrow v_1 = k_1 = 2, v_2 = k_2 = 1, v_3 = \infty \text{ and } k_3 = 1 \Rightarrow \rho_1 = 2, \rho_2 = 1 \text{ and } \rho_3 = 1 \Rightarrow \Phi = \{dh_1, dL_f h_1, dh_2, dh_3\} = \{dx_1, -\delta dx_1 + dx_2, dx_3, dx_4\}
$$
\n
$$
\Rightarrow \text{rank}_{\mathcal{K}(\delta)} \Phi = 4 \Rightarrow \qquad \qquad \Box
$$

$$
z = \phi(x, \delta) = (x_1, x_2 - \delta x_1, x_3, x_4)^T
$$

INSTITUT NATIONAL
DE RECHERCHE
EN INFORMATIQUE
ET EN AUTOMATIQUE

Example

Since

$$
x=\phi^{-1}=(z_1,\delta z_1+z_2,z_3,z_4,)^T
$$

 \Rightarrow the change of coordinate is bicausal over K, thus the state of [\(14\)](#page-22-0) is locally causally observable:

$$
\begin{cases}\nx_1(t) = y_1(t), x_2(t) = y_1(t-\tau) + \dot{y}_1(t) \\
x_3(t) = y_2(t), x_4(t) = y_3(t)\n\end{cases}
$$

Moreover, since $\Gamma = \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix}$ δ 1 $\Big) \Rightarrow \Gamma^{-1} = \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix}$ $-\delta$ 1 S.t. $\Gamma^{-1}\Gamma = I_{2\times 2}$

 \Rightarrow Γ is unimodular over $\mathcal{K}(\delta) \Rightarrow$ the unknown inputs are causally observable as well:

$$
\begin{cases}\nu_1(t) = \dot{y}_1(t-\tau) + \ddot{y}_1(t) + y_2(t-\tau) \\
u_2(t) = \dot{y}_2(t) - y_1(t-\tau) - \dot{y}_1(t-2\tau) - \ddot{y}_1(t-\tau) - y_2(t-2\tau)\n\end{cases}
$$

Remark

- The condition of $rank_{\mathcal{K}(\delta)}\Phi = n$ is sometimes hard to be satisfied.
- When $rank_{\mathcal{K}(\delta)}\Phi < n$, is it still possible to estimate the state and the unknown inputs?

In [\[1\]](#page-38-3), a constructive algorithm to solve this problem for nonlinear systems without delays has been proposed, which in fact can be generalized to treat the same problem for nonlinear time-delay systems.

Illustrative example

Ex:

$$
\begin{cases}\n\dot{x}_1 = -\delta x_1 + \delta x_4 u_1, \dot{x}_2 = -\delta x_3 + x_4 \\
\dot{x}_3 = x_2 - \delta x_4 u_1, \dot{x}_4 = u_2 \\
y_1 = x_1, y_2 = \delta x_1 + x_3\n\end{cases}
$$
\n(15)

 $\Rightarrow \nu_1 = k_1 = 1, \nu_2 = 1, k_2 = 3 \Rightarrow \rho_1 = \rho_2 = 1 \Rightarrow \Phi = \{dx_1, \delta dx_1 + dx_3\}$ \Rightarrow rank_{K(δ]} $\Phi = 2 < n \Rightarrow$ Theorem 2 cannot be applied. Precisely,

$$
\dot{y}_1 = -\delta x_1 + \delta x_4 u_1
$$

and $\dot{y}_2 = -\delta^2 x_1 + \delta^2 x_4 \delta u_1 + x_2 - \delta x_4 u_1 \Rightarrow$ derivative impossible.

Illustrative example

Ex:

$$
\begin{cases}\n\dot{x}_1 = -\delta x_1 + \delta x_4 u_1, \dot{x}_2 = -\delta x_3 + x_4 \\
\dot{x}_3 = x_2 - \delta x_4 u_1, \dot{x}_4 = u_2 \\
y_1 = x_1, y_2 = \delta x_1 + x_3\n\end{cases}
$$
\n(15)

 $\Rightarrow \nu_1 = k_1 = 1, \nu_2 = 1, k_2 = 3 \Rightarrow \rho_1 = \rho_2 = 1 \Rightarrow \Phi = \{dx_1, \delta dx_1 + dx_3\}$ \Rightarrow rank_{K(δ]} $\Phi = 2 < n \Rightarrow$ Theorem 2 cannot be applied. Precisely,

$$
\dot{y}_1 = -\delta x_1 + \delta x_4 u_1
$$

and $\dot{y}_2 = -\delta^2 x_1 + \delta^2 x_4 \delta u_1 + x_2 - \delta x_4 u_1 \Rightarrow$ derivative impossible. However,

 $\dot{y}_2 - (\delta - 1)\dot{y}_1 \Rightarrow \dot{y}_2 - (\delta - 1)\dot{y}_1 = -\delta x_1 + x_2 \Rightarrow x_2 = \dot{y}_2 - (\delta - 1)\dot{y}_1 + \delta y_1$

Note $y_3 = x_2 \Rightarrow y_3 = k_3 = 2 \Rightarrow \rho_3 = 2 \Rightarrow$ $\Phi = \{dx_1, \delta dx_1 + dx_3, dx_2, -\delta dx_3 + dx_4\} \Rightarrow rank_{K(\delta)} \Phi = 4$

Notation and Definition

For the case where $rank_{K(\delta)}\Phi = j < n$, select j linearly independent vector over $R[\delta]$ from Φ, where $R[\delta]$ means the set of polynomials of δ with coefficients belonging to R , noted as

$$
\Phi = \{dz_1, \cdots, dz_j\}
$$

Note

$$
\mathcal{L}=\text{span}_{R[\delta]}\left\{z_1,\cdots,z_j\right\}
$$

and let $\mathcal{L}(\delta)$ be the set of polynomials of δ with coefficients over \mathcal{L} , define the module spanned by element of Φ over $\mathcal{L}(\delta)$ as follows

$$
\Omega = span_{\mathcal{L}(\delta)} \left\{ \xi, \xi \in \Phi \right\} \tag{16}
$$

Define $G = span_{R[\delta]} \{G_1, \ldots, G_m\}$ and its left annihilator

$$
\mathcal{G}^{\perp}=\textit{span}_{R[\delta]}\{\omega\in\Omega\mid\omega\mathcal{g}=0,\forall\mathcal{g}\in\mathcal{G}\}
$$

Theorem for general case

Theorem 3

For [\(4\)](#page-10-0) with outputs $y = (y_1, \dots, y_p)^T$ and corresponding (ρ_1, \dots, ρ_p) with $\rho_i = \mathsf{min}\{k_i, \nu_i\}$ where k_i and ν_i are respectively the associated observability indices and the relative degree which yields [\(12\)](#page-20-1) with rank $K(\delta)$ Φ < n where Φ is defined in [\(13\)](#page-20-0), there exists l new independent outputs over K which are functions of y and its time derivatives and backwards time shifts, if and only if $rank_K\mathcal{H} = l$ where

$$
\mathcal{H} = \text{span}_{R[\delta]} \{ \omega \in \mathcal{G}^{\perp} \cap \Omega \mid \omega f \notin \mathcal{L} \}
$$
 (17)

with $Ω$ defined in [\(16\)](#page-27-0).

Moreover, the new outputs, noted \bar{y}_i for $1 \leq i \leq l$, are given as follows:

$$
\bar{y}_i = \omega_i f \mod \mathcal{L}
$$

where $\omega_i \in \mathcal{H}$.

Remarks

• Roughly speaking, for

$$
H(x,\delta) = \Psi(x,\delta) + \Gamma(x,\delta)u
$$

if there exists a $1 \times p$ vector Q with entries $q_i \in \mathcal{L}(\delta)$, such that $Q\Gamma = 0$ and $Q\Psi \notin \mathcal{L}$, then we denote

$$
y_{p+1} = Q\Psi \mod \mathcal{L}
$$

a new output since it is not affected by the unknown input u , and it does not belong to the current measurable vector \mathcal{L} .

- Theorem 3 gives a constructive way to treat the case where rank $K(\delta)$ Φ < n.
- A 'Check-Extend' procedure is iterated until one obtains rank $K(\delta)$ $\Phi = n$.

Routine to deduce the new outputs

```
Input: DTS with x \in R^n, y \in R^p, u \in R^mOutput: Φ or failed
Initialization: Compute \nu_i, k_i, \rho_i, \Phi, rank_{\mathcal{K}(\delta)}\Phi = jLoop:
       While j < n\Phi = \{ dz_1, \cdots, dz_j \}\mathcal{L} = span_{R[\delta]}\left\{z_1, \cdots, z_j\right\}\Omega = span_{\mathcal{L}(\delta)} \{\xi, \xi \in \Phi\}\mathcal{H} = span_{R[\delta]} {\omega \in \mathcal{G}^{\perp} \cap \Omega \mid \omega f \notin \mathcal{L}}rankK(\delta)\mathcal{H} = IIf l > 0\exists l 1-forms, s.t. \mathcal{H} = span_{R[\delta]} \{\omega_1, \cdots \omega_l\}y = y \cup \{\omega_i f \mod \mathcal{L}, 1 \leq i \leq l\}Reorder y
                       For each y_i \in y, calculate \nu_i, k_i, \rho_i\phi = {\{\cdots, dh_i, \cdots, dl_f^{\rho_i}h_i, \cdots\}}rank\mathcal{K}(\delta)\Phi = jElse
                      Return(failed)
        End
```
Return(Φ)

Example

$$
\begin{cases}\n\dot{x}_1 = -\delta x_1 + \delta x_4 u_1, \dot{x}_2 = -\delta x_3 + x_4 \\
\dot{x}_3 = x_2 - \delta x_4 u_1, \dot{x}_4 = u_2\n\end{cases}
$$
\n(18)
\n
$$
\Rightarrow \rho_1 = \rho_2 = 1 \Rightarrow \Phi = \{dx_1, \delta dx_1 + dx_3\} \Rightarrow \text{rank}_{\mathcal{K}(\delta)} \Phi = 2 < n.
$$
\n
$$
\mathcal{G} = \text{span}_{R[\delta]} \{(\delta x_4, 0, -\delta x_4, 0)^T, (0, 0, 0, 1)^T\} \Rightarrow \mathcal{G}^\perp =
$$

span $_{R[\delta]}\left\{ dx_{1}+dx_{3},dx_{2}\right\}$ $rank_{\mathcal{K}(\delta)}\Phi = 2 \Rightarrow \mathcal{L} = span_{R[\delta]} \{x_1, \delta x_1 + x_3\} \Rightarrow \Omega = span_{\mathcal{L}(\delta)} \{dx_1, dx_3\}$

$$
\Omega \cap \mathcal{G}^{\perp} = \text{span}_{\mathcal{L}(\delta)} \{dx_1, dx_3\} \cap \text{span}_{R[\delta]} \{dx_1 + dx_3, dx_2\} \n= \text{span}_{\mathcal{L}(\delta)} \{dx_1 + dx_3\}
$$

 \Rightarrow $\forall \omega \in \Omega \cap \mathcal{G}^{\perp}, \omega f \notin \mathcal{L}$ since $\omega f = -\delta x_1 + x_2 \Rightarrow$ new output h_3 :

y³ = h³ = ωf mod L = x² = δy¹ + (1 − δ) ˙y¹ + ˙y² (19) 32 / 39

Example

 $\Rightarrow \rho_1 = \rho_2 = 1$ and $\rho_3 = 2 \Rightarrow \Phi = \{dx_1, \delta dx_1 + dx_3, dx_2, -\delta dx_3 + dx_4\}$ \Rightarrow rank_{K(δ]} $\Phi = 4 = n$, thus we find the following change of coordinate

$$
z = \phi(x, \delta) = (x_1, \delta x_1 + x_3, x_2, -\delta x_3 + x_4)^T
$$

it is easy to check that it is bicausal over $\mathcal{K}(\delta)$, since

$$
x=\phi^{-1}=\left(z_1,z_3,z_2-\delta z_1,z_4+\delta z_2-\delta^2 z_1\right)
$$

and one gets

$$
\begin{cases}\nx_1 = y_1, x_2 = y_3, x_3 = y_2 - \delta y_1, \\
x_4 = -\delta^2 y_1 + \delta y_2 + \dot{y}_3\n\end{cases}
$$

where the new output y_3 is defined in [\(19\)](#page-31-0).

$$
\begin{cases}\n u_1 = \frac{\dot{y}_1}{-\delta^3 y_1 + \delta^2 y_2 + \delta y_3} \\
 u_2 = -\delta \dot{y}_1 + \dot{y}_3\n\end{cases}
$$

Remark

- It is the locally bicausal change of coordinate which makes the state of system locally causally observable.
- It is the unimodular characteristic of Γ over $\mathcal{K}(\delta)$ which guarantees the causal reconstruction of unknown inputs.

The following is devoted to dealing with the non-causal case.

Non-causal observability

 ∇ : the forward time-shift operator, such that for $i, j \in \mathbb{N}$,

$$
\nabla f(t) = f(t+\tau), \nabla^{i} \delta^{j} f(t) = \delta^{j} \nabla^{i} f(t) = f(t-(j-i)\tau)
$$

 \overline{K} : the field of functions of a finite number of variables from ${x_i(t - i\tau), j \in [1, n], i \in S}$ where $S = \{-s, \cdots, 0, \cdots, s\}$ $\overline{\mathcal{K}}(\delta, \nabla)$: the set of polynomials of the following form:

$$
a(\delta,\nabla] = \bar{a}_{r_{\bar{a}}}\nabla^{r_{\bar{a}}} + \cdots + \bar{a}_1\nabla + a_0(t) + a_1(t)\delta + \cdots + a_{r_a}(t)\delta^{r_a}
$$
\n(20)

where $a_i(t)$ and $\bar{a}_i(t)$ belonging to $\bar{\mathcal{K}}$. Usual addition $+$ the following multiplication:

$$
a(\delta, \nabla | b(\delta, \nabla] = \sum_{i=0}^{r_{\mathfrak{g}}} \sum_{j=0}^{r_{\mathfrak{b}}} a_{i} \delta^{i} b_{j} \delta^{i+j} + \sum_{i=0}^{r_{\mathfrak{g}}} \sum_{j=1}^{r_{\mathfrak{b}}} a_{i} \delta^{i} \bar{b}_{j} \delta^{i} \nabla^{j} + \sum_{i=1}^{r_{\mathfrak{g}}} \sum_{j=0}^{r_{\mathfrak{b}}} \bar{a}_{i} \nabla^{i} b_{j} \nabla^{i} \delta^{j} + \sum_{i=1}^{r_{\mathfrak{g}}} \sum_{j=1}^{r_{\mathfrak{b}}} \bar{a}_{i} \nabla^{i} \bar{b}_{j} \nabla^{i+j}
$$

ZINRIA

It is clear that
$$
K \subseteq \overline{K}
$$
 and $K(\delta] \subseteq \overline{K}(\delta, \nabla]$.

Theorem

Theorem 4

For system [\(4\)](#page-10-0) with outputs (y_1, \ldots, y_p) and corresponding (ρ_1, \ldots, ρ_p) , if ran $k_{\mathcal{K}(\delta)}\Phi = n$, where Φ defined in [\(13\)](#page-20-0), then there exists a change of coordinate $z = \phi(x, \delta)$ such that [\(4\)](#page-10-0) can be transformed into [\(9-](#page-19-0)[11\)](#page-19-1) with $dim\xi = 0$. Moreover, if the change of coordinate $z = \phi(x, \delta)$ is locally

bicausal over $\overline{\mathcal{K}}$, then the state $x(t)$ of [\(4\)](#page-10-0) is at least non-causally observable.

For the deduced matrix Γ with $rank_{\mathcal{K}(\delta)}\Gamma = m$, one can obtain a matrix $\bar{\Gamma} \in \mathcal{K}^{m \times m}(\delta)$ which has full row rank m. If $\bar{\Gamma}$ is unimodular over $\overline{\mathcal{K}}(\delta, \nabla)$, then the unknown input $u(t)$ of [\(4\)](#page-10-0) can be at least non-causally estimated as well.

Example

$$
\begin{cases}\n\dot{x}_1 = \delta x_1 + x_2 \delta u_1, \dot{x}_2 = -x_1 + u_1 + x_3 \delta u_2 \\
\dot{x}_3 = x_4 - x_1 \delta x_2 \delta^2 u_1, \dot{x}_4 = \delta x_1 + \delta^3 x_2 \\
y_1 = x_1, y_2 = \delta x_3\n\end{cases}
$$
\n(21)

 $\Rightarrow \nu_1 = k_1 = 1, \nu_2 = 1, k_2 = 3 \Rightarrow \rho_1 = \rho_2 = 1 \Rightarrow \Phi = \{dx_1, \delta dx_3\} \Rightarrow$ rank $\mathcal{K}(\delta)$ $\Phi = 2 < n$.

$$
\mathcal{G} = span_{R[\delta]}\{G_1, G_2\} \Rightarrow \mathcal{G}^{\perp} = span_{R[\delta]}\{x_1 \delta dx_1 + dx_3, dx_4\}
$$

 $rank_{\mathcal{K}(\delta)}\Phi = 2 \Rightarrow \mathcal{L} = span_{R[\delta]} \{x_1, \delta x_3\} \Rightarrow \Omega = span_{\mathcal{L}(\delta)} \{dx_1, \delta dx_3\} \Rightarrow$

$$
\Omega \cap \mathcal{G}^{\perp} = \text{span}_{\mathcal{L}(\delta)} \{dx_1, \delta dx_3\} \cap \text{span}_{R[\delta]} \{x_1 \delta dx_1 + dx_3, dx_4\}
$$

= span _{$\mathcal{L}(\delta) \{ \delta x_1 \delta^2 dx_1 + \delta dx_3 \}$}

Since $\omega f = \delta x_1 \delta^3 x_1 + \delta x_4 \notin \mathcal{L} \Rightarrow$

$$
y_3 = h_3 = \omega f \mod \mathcal{L} = \delta x_4 = \delta y_1 \delta^2 \dot{y}_1 + \dot{y}_2 - \delta y_1 \delta^3 y_1
$$
 (22)

Example

 \Rightarrow $\rho_1 = \rho_2 = 1, \nu_3 = k_3 = 2 \Rightarrow \rho_3 = 2 \Rightarrow \Phi = \{dx_1, \delta dx_3, \delta dx_4, \delta^3 dx_2\}$ \Rightarrow rank $_{\mathcal{K}(\delta)}\Phi=4=n\Rightarrow\mathcal{L}=span_{R[\delta]}\{x_1,\delta x_3,\delta x_4,\delta^3 x_2\}\Rightarrow$ the following change of coordinate

$$
z = \phi(x, \delta) = (x_1, \delta x_3, \delta x_4, \delta x_1 + \delta^3 x_2)^T
$$

which is not bicausal over K, but bicausal over K, since one has

$$
x=\phi^{-1}=\left(z_1,-\nabla^2 z_1+\nabla^3 z_4,\nabla z_2,\nabla z_3\right)^T
$$

which gives

$$
\left\{\begin{array}{l} x_1=y_1, x_2=-\nabla^2 y_1+\nabla^3 \dot{y}_3\\ x_3=\nabla y_2, x_4=\nabla y_3 \end{array}\right.
$$

where y_3 is given in [\(22\)](#page-36-0). Thus x of [\(21\)](#page-36-1) is observable, but non causally observable. The calculation for u is omitted (see [\[5\]](#page-38-4) for more details).

Reference

J.-P. Barbot, D. Boutat, and T. Floquet, "An observation algorithm for nonlinear systems with unknown inputs," Automatica, vol. 45, pp. 1970–1974, 2009.

J. Ježek, "Rings of skew polynomials in algebraical approach to control theory," Kybernetika, vol. 32, no. 1, pp. 63–80, 1996.

L. Marquez-Martinez, C. Moog, and V. Martin, "Observability and observers for nonlinear systems with time delays," Kybernetika, vol. 38, no. 4, pp. 445–456, 2002.

X. Xia, L. Marquez, P. Zagalak, and C. Moog, "Analysis of nonlinear time-delay systems using modules over non-commutative rings," Automatica, vol. 38, pp. 1549–1555, 2002.

G. Zheng, J.-P. Barbot, D. Boutat, T. Floquet, and J.-P. Richard, "On finite time observation of nonlinear time-delays systems," in Proc. of the 8th IFAC Symposium on Nonlinear Control Systems, http://hal.inria.fr/inria-00467966/en/, 2010.

TITUT NATIONAL

