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Observability for nonlinear systems without delays

Consider the following nonlinear systems:

{ X = f(x)
y = h(x)
dh
dL¢h
Condition: rank dizh | =n
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Observability for nonlinear systems without delays

Consider the following nonlinear systems:

{ X = f(x)
y = h(x)
dCLlhh X1 = X1 + X2
o f _ L) =Xt xax
Condition: rank di2h | =0 Ex: %5 = X2 + x5 Calculate the
: y=xi
differentiation of the output:
dy = dxg
dy = dxg+dx
d_y = (1+X2)dX1+(1+X1)dX2—|—dX3
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Observability for nonlinear systems with delays

x(t) = x1(t — 7) + xo(t)

x2(t) = x3(t) + x1(t)x(t — 27)
K3(t) = (¢ = 7) + x3(2)

y(t) = x(t)
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Observability for nonlinear systems with delays

|

x(t) = x1(t — 7) + xo(t)

x2(t) = x3(t) + x1(t)x(t — 27)
K3(t) = (¢ = 7) + x3(2)

y(t) = x(t)

Calculate the differentiation of the output:

)

dy(t dx (t)
dy(t)
dy(t)

Quite complicated to be analyzed.

dxi (t — 7) + dxo(t)
xo(t — 27)dx1(t) + dxq (t — 27) + dxo(t — 7) + x1(t)dxa(t — 27) + dx3(t)
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Observability for nonlinear systems with delays

x(t) = x1(t — 7) + xo(t)

x2(t) = x3(t) + x1(t)x(t — 27)
K3(t) = (¢ = 7) + x3(2)

y(t) = x(t)

Calculate the differentiation of the output:

d(t)=  da(t)
dy(t) = dxy(t — 7) + dxa(t)
dy(t) =  xo(t — 27)dxq(t) + dxy(t — 27) + dxo(t — 7) + x1(t)dxa(t — 27) + dx3(t)

Quite complicated to be analyzed. Introduce delay operator &, then

a(t) = da(t)
di(t) = d(dx1 (1) + da(t) = baba(t) + da(t)
di(t) = 82xa(t)da(t) + d(62 (1)) + d(dxa(t)) + x1(£)d(62xa(8)) + dba(t)

= 62xp()dx1 (t) + 8%dx1 () + Sdxo(t) + x1(£)62dxa(t) + dxa(t)
= (8%x + 62)dxy + (8 + x162)dxp + dxz

Since the coefficients are polynomials of §, we can try to establish a polynomial ring for TDS, which is not

commutative.
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Time-delay systems

Consider the following nonlinear time-delay system:
X
y

= f(x(t —im)) + ;o &/ (x(t — iT))u(t — j7)

h(x(t —iT)) (1)
[h(x(t —iT)), ..., hp(x(t —iT))]T

x(t) =(t),u(t) = o(t), t € [-57,0]

where x € W C R" denotes the state variables,
u=u,...

,um]T € R™ is the unknown admissible input, y € RP
is the measurable output. p > mand i € S_ = {0, 1,

.,S}is a
finite set of constant time-delays.
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Non-commutative algebraic framework [4]

IC: the field of functions of a finite number of the variables from
{xj(t —it),j€[1,n],ie S_}.

E: the vector space over K: € = spanic{d{ : £ € K}.

§: backward time-shift operator, i.e. §'¢(t) = &(t — iT) and

&' (a(t)d&(t)) = 0'a(t)6"de(t)
K(8]: the set of polynomials of the form
a(d] = ao(t) + ar(t)0 +--- + a, ()™, ai(t) € K (2)

Addition in (4] is usual, but the multiplication is given as
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Property

a(8] = 6x10, b(8] = xo + X162

a(6] 4+ b(0] = 0x16 + x2 + x162
a(0]b(3] = 6x10(x2 + x10%) = 5x19x28 + 6x16x,6°
b(0]a(d] = (x2 + X152)5X15 = x0x10 + x10°x16°

IC(8] satisfies the associative law and it is a non-commutative ring
(see [4]). However, it is proved that the ring KC(4] is a left Ore ring
[2, 4], which enables to define the rank of a module over this ring.
Let M denote the left module over (9]

M = spani5{d¢, € € K}
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Time-delay systems under non-commutative rings

With the definition of (4], (1) can be rewritten in a more
compact form as follows:

X = f(X,(S)—i—Z;n:l G,'U,‘(t)
y  =h(x,6) (4)
x(t) = (t), u(t) = ¢(t), t € [-57,0]

where f(x,8) = f(x(t — iT)) and h(x,d) = h(x(t — iT)) with
entries belonging to IC, G; = Zj-zogi’éj with entries belonging to
IC(6]. It is assumed that rank,c((;]% = p, which implies that

[h1,..., hp]T are independent functions of x and its backward
shifts.
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Observability and Left invertibility

Definition
System (1) is locally observable if the state x(t) can be expressed as:

x(t) = aly(t —j7),....y"¥(t = jr)) (5)

for j€ Z and k € ZT. It is locally causally observable if (5) is satisfied
for j € Z% and k € Z7, and locally non-causally observable if (5) is
satisfied for j € Z and k € Z™.
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Observability and Left invertibility
Definition
System (1) is locally observable if the state x(t) can be expressed as:

x(t) = aly(t —j7),....y"¥(t = jr)) (5)

for j€ Z and k € ZT. It is locally causally observable if (5) is satisfied
for j € Z% and k € Z7, and locally non-causally observable if (5) is
satisfied for j € Z and k € Z™.

Definition
The unknown input u(t) can be estimated if it can be written as follows:

u(t) = By(t — jr),....y W (t - jr)) (6)

for j € Z and k € Z*. It can be causally estimated if (6) is satisfied for
J€Z" and k € Z*, and non-causally estimated if (6) is satisfied for
j€Zand ke ZT.
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Example

X1 = Xo + 5X1,)'(2 = 52X2 — 5X3,
X3 25X4+5U1+54U2,5(4:5U2 (7)
Yi=X1,y2 = 0xa

A straightforward calculation gives
x(t) = y(t),x(t) =y(t) - y(t—r7)

x3(t) =yt —7)—yi(t —27) = yu(t + 7) + y(t)
x(t) = yat+7)

and
n(t) = n(t)=n(t—7)=Yi(t+27)+n(t+7)
—yo(t+7)—y(t—71)
umn(t) = y(t+27)
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Unimodular matrix and change of coordinate

Definition
(Unimodular matrix) [3] Matrix A € K"*"(4] is said to be
unimodular over K(d] if it has a /eft inverse A~ € K"<"(§], such

that A=YA = l,xp.
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Unimodular matrix and change of coordinate

Definition

(Unimodular matrix) [3] Matrix A € K"*"(4] is said to be
unimodular over K(d] if it has a /eft inverse A~ € K"<"(§], such
that A=YA = l,xp.

Definition

(Change of coordinate) [3] For system (1), z = ¢(5,x) € K™ is a
causal change of coordinate over K for (1) if there exists locally a
function qﬁ*l € K" and some constants c1, -+ ,¢yh € N such that

diag {6} x = ¢71(6, 2).

The change of coordinate is bicausal over K if max{c;j} =0, i.e.
x = ¢4, 2).
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Lie derivative for TDS

Let f(x(t —j7)) and h(x(t — j7)) for 0 <j < s respectively be an
n and p dimensional vector with entries f, € IC for 1 < r < n and
hi e K for1 <i<p. Let

oh;  [oh; Oh; e
=g B ekt (5)
where for 1 < r < n:

ohi < Oh; ,
— - 5
Bx, ; aait—jn)° €Nl

then the Lie derivative for TDS can be defined as follows

Oh; Oh;
aX (f) and LG,'hi = an(G,)

Leh; =
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Relative degree for TDS

Definition

(Relative degree) System (4) has relative degree (v1,---,1p) in an
open set W C R" if, for 1 < i < p, the following conditions are
satisfied :

Q@ forall xe W, LGjL;h; =0, forall1<j<mand
0<r<uy —1,
@ there exists x € W such that 3j € [L, m], Lg, Ly 'h; # 0.

If for 1 < i< p, (1) is satisfied for all r > 0, then we set v; = cc.
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Observability indices for TDS

Let Fi := spani(s) {dh, dLeh, - - ,dL’f‘_lh} for 1< k <n,
satisfying F1 C F» C -+ C Fp. then we define

di = rankg@sF1, and dx = rankis1Fk — rankis)Fk-1

for 2 < k < n. Let kj = card {dx > i,1 < k < n} then
P

(ki,- -+, kp) are the observability indices, and ) k; = n since it is
i=1
assumed that (4) is observable with u = 0. Reordering, if

necessary, the output components of (4), such that

olhLeh,- Li7*h]"

] 2% -
d hl,thl,...,Lﬁflhl,.-.,hp,th,,,v--,Lﬁf’*lhp]

= rankyc(g ox

—ki+-+ky=n

rank,c((;
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Canonical form and causal observability

Theorem 1

For 1 < i < p, denote k; the observability indices and v; the relative degree index for y; of (4), and note
pi = min {vj, k;}. Then there exists a change of coordinate ¢(x, §) € ">, such that (4) can be transformed
into the following form:

2 = Ajzj + B;V; (9)
£=a(z,€08)+ B(z, & d)u (10)
yi = Gz (11)

where A; € RPi*Pi is in the Brounovsky form and

P T . .
s o= (b1 lh,-) e kPi*l B = (0, --,0,1)7 € RPI¥L,
< 1 Ix1
P Pi— X
vV, = Lf’hi(x,6)+ZLGij’ hi(x, 8)u; € K, e € K
j=1
/ P
B € KNSwith1=n—>"p;, G =(1,0,---,0) € R\

j=1
Moreover if k; < v;, one has V; = Lf’.h,- = L:ih,-.

INSTITUT NATIONAL
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For (9), note

H(x,d) = V(x,0) +T(x,0)u (12)
with
hgpl) L/;I hl
H(x, ) = : ,V(x,0) = :
hgop) L?php
and
Ll thy - L L0ty
M(x,0) = _ . :
Lo, L hy o Lo L th,

where H(x,§) € KKP*Y, W(x, ) € KP*1 and I'(x, ) € KP*™(].
And for (4), let denote ® the observable space from its outputs:

& = {dhy,---,dLO hy, - dhp, - dUP T Y (13)
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Main theorem

Theorem 2

For system (4) with outputs (y1,...,Y,) and corresponding (p1, ..., pp)
with p; = min{k;, v;} where k; and v; are respectively the associated
observability indices and the relative degree, if

ranki@s® = n

where ® defined in (13), then there exists a change of coordinate ¢(x, J)
such that (4) can be transformed into (9-11) with dim{ = 0.

Moreover, if the change of coordinate is locally bicausal over IC, then the
state x(t) of (4) is locally causally observable.

For the matrix ' € KCP*™(5] where m < p, if ranky(s)” = m, then there
exists a matrix Q € CP*P (4] such that QI = [ g ] where T € K™<™ (4]

has full row rank m. Moreover, if I € K™*™(§] is also unimodular over
KC(0], then the unknown input u(t) of (4) can be causally estimated.
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Example

X1 = —0x1 + X0, % = —0x3 + U
X3 = 0x1 + 0wy + Up, X4 = —xq4 + 20x4/3 (14)
Y1i=X1,Y2 = X3,y3 = Xa

:>V1:k1:2,V2:k2:1,l/3:ooandk3:1$p1:2,p2:1and
p3=1=

¢ = {dhl, dehl, dh2, dh3} = {Xm7 —5dX1 + ng, dX3, dX4}
= rank,c(5]¢ =4=

z=¢(x,0) = (x1, % — §x1,X3,x4)T
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Example

Since
—1 T
X:¢ :(217521+22,Z3,Z4,)

= the change of coordinate is bicausal over K, thus the state of (14) is
locally causally observable:

{ x(t) = y(t)x(t) =yt —7)+n(t)
x3(t) = ya(t), xa(t) = ys(t)

0 1 -6 1
= [ is unimodular over [C(d]=-the unknown inputs are causally
observable as well:

Moreover, since I = ( 1o ) =I1= ( 10 ) st. T7IM = hyo

{ ui(t) yi(t = 1)+ (t) + yat — 7)
w(t) = y(t) —yn(t—7)—n(t—27) = n(t—71) -yt —27)
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Remark

e The condition of ranky5® = n is sometimes hard to be
satisfied.

o When ranki5® < n, is it still possible to estimate the state
and the unknown inputs?

In [1], a constructive algorithm to solve this problem for nonlinear
systems without delays has been proposed, which in fact can be
generalized to treat the same problem for nonlinear time-delay
systems.
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lllustrative example

Ex:

X1 = —0x1 + 0xau1, X0 = —0x3 + Xa
5(3 = Xp — (5X4U1,5(4 = U (15)
Y1 =X1,Y2 = 0x1 +x3
un=k=11n=1, k2:3:>p1:p221$¢I{dX1,5dX1+dX3}
= ranky5)® =2 < n = Theorem 2 cannot be applied.

Precisely,
y1 = —0x1 + dxauy

and y» = —0%x1 + 6°x40u; + Xo — dx4uy=derivative impossible.
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lllustrative example

Ex:

X1 = —0x1 + 0xau1, X0 = —0x3 + Xa
5(3 = Xp — (5X4U1,5(4 = U (15)
Y1 =X1,y2 = 0x1 + X3

=uv=k=11rn=1, k2:3:$p1:p2:1é¢:{dx1,5dxl+d><3}
= ranky5)® =2 < n = Theorem 2 cannot be applied.
Precisely,

y1 = —0x1 + dxauy

and y» = —0%x; + 8°x40u; + xo — dxquy=derivative impossible. However,
Vo—0-n=y—-—0-1n=-"0xx+x =x=y—(0—1)y1+0oy

Note ys=xo = 113 =k3=2= p3=2 =
& = {dx1,ddx; + dx3, dxz, —0dx3 + dxa }= rank(s)® = 4
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Notation and Definition

For the case where rankyx5® = j < n, select j linearly independent
vector over R[J] from ®, where R[0] means the set of polynomials of §
with coefficients belonging to R, noted as

o ={dz, - ,dz}

Note
L= spanR[5] {217 T 721}

and let £(9] be the set of polynomials of § with coefficients over L,
define the module spanned by element of ® over £(J] as follows

Q = spang 51 {&, € € ¢} (16)

Define G = spang(s){ G1, - - -, Gm} and its left annihilator

G+ = spangs{w € Q |wg =0,Vg € G}
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Theorem for general case

Theorem 3

For (4) with outputs y = (y1,--- ,Y,)" and corresponding (p1, ..., pp)
with p; = min{k;, v;} where k; and v; are respectively the associated
observability indices and the relative degree which yields (12) with
ranki(51® < n where @ is defined in (13), there exists / new independent
outputs over I which are functions of y and its time derivatives and
backwards time shifts, if and only if rankx™ = | where

H = spangps){w € Gt NQ | wf ¢ L} (17)

with Q defined in (16).
Moreover, the new outputs, noted y; for 1 < i </, are given as follows:

Vi =w;f mod L

where w; € H.
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Remarks

e Roughly speaking, for
H(x,d) = V(x,d) +(x,0)u

if there exists a 1 X p vector Q with entries g; € £(J], such
that QI = 0 and QW ¢ L, then we denote

Yp+1 = QV mod L

a new output since it is not affected by the unknown input v,
and it does not belong to the current measurable vector L.

e Theorem 3 gives a constructive way to treat the case where
ranki5® < n.

e A 'Check-Extend’ procedure is iterated until one obtains
ranky 5 ® = n.
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Routine to deduce the new outputs

Input: DTS with x € R", y € RP, u € R™
Output: & or failed
Initialization: Compute v}, k;, p;, ®, rank;c((;]tb =J

Loop:
While j < n
&= {dz, - ,de}
L= spangjs| {21; L. »Zj}
Q = spang(5) {6, € € ¢}
‘H = spang(sj{w € Gtna|wf¢ry
rank,c([;]'H =1
If/ >0
3/ 1-forms, s.t. H = spang|s {wi, - wi}
y=yU{w;f mod £,1<i< [}
Reorder y
For each y; € y, calculate v;, ki, p;
¢={--,dhj,--- y[iji;,,.,4..}
rankyc (5% = J
Else
Return(failed)
End
Return(®)

INSTITUT NATIONAL
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Example

X1 = —0x1 + Oxgur, Xo = —0x3 + Xa
)'(3 = Xo — (5X4U1,).(4 = Uz (18)
Y1 =x1,y2 =0x1+ X3

=p=p=1=¢= {Xm,(SdX;l + dX3} = rank,c(5]¢ =2<n.

G =spangys1{(0xa, 0, —xa, 0)7,(0,0,0,1)T}=G+ =

spangps) {dx1 + dxs, dxo }

rank,q(;]d) =2=L = Spang|s) {Xl, oxy + X3} = Q= spancs) {Xm7 dX3}

Qngt = spang s {dxi, dxs} N spangs) {dx1 + dxs, dxa }
= spangs {dx; + dx3}

= Yw € QNG wf ¢ L since wf = —6x; + xp = new output hs:

y3 = h3 = wf mod£:X2:6y1+(1—6))'/1 + v (19)
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Example

=pr=p2=1and p3 =2 = & = {dxy,ddx; + dxs, dxp, —ddx3 + dxq}
= ranky;)® = 4 = n, thus we find the following change of coordinate

z = ¢(x,0) = (x1,0x1 + x3, X2, —0x3 + x4)T
it is easy to check that it is bicausal over K(d], since

x=¢ 1= (21723722 —0z1,z4+ 6zp — 5221)
and one gets

X1 :}’LXZ :y3aX3 :y2 75.)/17
x4 = —8%y1 4+ 0yr + y3

where the new output y3 is defined in (19).

_ Y1
{ U = =53y 562,767
u = —oy1+ys
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Remark

e |t is the locally bicausal change of coordinate which makes the
state of system locally causally observable.

e It is the unimodular characteristic of I' over K(d] which
guarantees the causal reconstruction of unknown inputs.

The following is devoted to dealing with the non-causal case.
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Non-causal observability

V: the forward time-shift operator, such that for i,j € N,
VF(t) = f(t+7),Vdf(t)=VF(t)=Ff(t—({—i)r)

C: the field of functions of a finite number of variables from
{xi(t —it),j € [1,n],i € S} where S = {—s,---,0,-- s}
KC(d, V]: the set of polynomials of the followmg form:

a(6,V] = a.,Vei+---4+a1V+ag(t)+ai(t)o+ -+ a,(t)d"
(20)
where a;(t) and 3;(t) belonging to K.
Usual addition + the following multiplication:

" b . b L
a(8, V]b(8, V] = ZaZaéb6'+j+ZZa6bévj ZZ bv'51+2325,-v'5jv’ﬂ

i=0 j=0 i=0 j=1 i=1 j=0 i=1 j=1

o

It is clear that I C K and k(8] € K(6, V].
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Theorem

Theorem 4

For system (4) with outputs (y1,...,yp) and corresponding

(p1,- -+, pp), if ranki(5® = n, where ® defined in (13), then there
exists a change of coordinate z = ¢(x, d) such that (4) can be
transformed into (9-11) with dim& = 0.

Moreover, if the change of coordinate z = ¢(x, ) is locally
bicausal over K, then the state x(t) of (4) is at least non-causally
observable.

For the deduced matrix ' with rankj(s) = m, one can obtain a
matrix I € KX™*™(§] which has full row rank m. If T is unimodular
over (9, V], then the unknown input u(t) of (4) can be at least
non-causally estimated as well. B
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Example

X1 = 0x1 + Xo0uy, X = —x1 + U1 + x30Up
X3 = Xg — X1(5X252u17)'<4 = 0x1 + 63 (21)
y1=X1,y2 = 0x3

un=k=1v=1, k2:3:>p1:p2:1:>¢:{dX1,6dX3}=>
ranki5® = 2 < n.

g zspanR[(;]{Gl, G2}=>gL = Spangs) {x10dx1 + dxs, dxq }
ranki(5® = 2 = L = spangs) {x1,0x3} = Q = spang(s) {dx1,0dxs} =

Qngt = spangs) {dxi, 6dxz} N spangps) {x16dx; + dxs, dxa }
= spang(s {6x10°dxy + ddxz }

Since wf = 0x103x; + 0x4 ¢ L =

y3=hs=wf mod L =0xs=06y16%51 + yo — 0y16°y1  (22)
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Example

=pp=p=lL1rn=k=2=p3=2=3>0= {Xm,(st3,(5dX4,53dX2}
= ranky(5)® = 4 = n=-L = spang(s}{x1, 0x3, 6 x4, 5%} = the following
change of coordinate

z=¢(x,0) = (xl, 0x3,0x4,0x1 + (53X2) T
which is not bicausal over K, but bicausal over K, since one has
x=¢"1=(z21,-V?21 + V2, V2, V23)T
which gives

x1 = y1,x = —V?y1 + V3y;
x3=Vys, x4 =Vy3

where y3 is given in (22). Thus x of (21) is observable, but non causally
observable. The calculation for u is omitted (see [5] for more details).
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