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Observability for nonlinear systems without delays

Consider the following nonlinear systems:{
ẋ = f (x)
y = h(x)

Condition: rank


dh

dLf h
dL2

f h
...

 = n.

Ex:


ẋ1 = x1 + x2

ẋ2 = x3 + x1x2

ẋ3 = x2
1 + x2x3

y = x1

Calculate the

differentiation of the output:

dy = dx1

dẏ = dx1 + dx2

dÿ = (1 + x2)dx1 + (1 + x1)dx2 + dx3
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Observability for nonlinear systems with delays

8>><>>:
ẋ1(t) = x1(t − τ) + x2(t)
ẋ2(t) = x3(t) + x1(t)x2(t − 2τ)

ẋ3(t) = x2
1 (t − τ) + x3(t)

y(t) = x1(t)

Calculate the differentiation of the output:

dy(t) = dx1(t)
dẏ(t) = dx1(t − τ) + dx2(t)
dÿ(t) = x2(t − 2τ)dx1(t) + dx1(t − 2τ) + dx2(t − τ) + x1(t)dx2(t − 2τ) + dx3(t)

Quite complicated to be analyzed. Introduce delay operator δ, then

dy(t) = dx1(t)
dẏ(t) = d(δx1(t)) + dx2(t) = δdx1(t) + dx2(t)

dÿ(t) = δ2x2(t)dx1(t) + d(δ2x1(t)) + d(δx2(t)) + x1(t)d(δ2x2(t)) + dx3(t)

= δ2x2(t)dx1(t) + δ2dx1(t) + δdx2(t) + x1(t)δ2dx2(t) + dx3(t)

= (δ2x2 + δ2)dx1 + (δ + x1δ
2)dx2 + dx3

Since the coefficients are polynomials of δ, we can try to establish a polynomial ring for TDS, which is not

commutative.
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Time-delay systems

Consider the following nonlinear time-delay system:
ẋ = f (x(t − iτ)) +

∑s
j=0 g j(x(t − iτ))u(t − jτ)

y = h(x(t − iτ))
= [h1(x(t − iτ)), . . . , hp(x(t − iτ))]T

x(t) = ψ(t), u(t) = ϕ(t), t ∈ [−sτ, 0]

(1)

where x ∈W ⊂ Rn denotes the state variables,
u = [u1, . . . , um]T ∈ Rm is the unknown admissible input, y ∈ Rp

is the measurable output. p ≥ m and i ∈ S− = {0, 1, . . . , s} is a
finite set of constant time-delays.
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Non-commutative algebraic framework [4]

K: the field of functions of a finite number of the variables from
{xj(t − iτ), j ∈ [1, n], i ∈ S−}.
E : the vector space over K: E = spanK{dξ : ξ ∈ K}.
δ: backward time-shift operator, i.e. δiξ(t) = ξ(t − iτ) and

δi (a(t)dξ(t)) = δia(t)δidξ(t)

K(δ]: the set of polynomials of the form

a(δ] = a0(t) + a1(t)δ + · · ·+ ara(t)δra , ai (t) ∈ K (2)

Addition in K(δ] is usual, but the multiplication is given as

a(δ]b(δ] =

ra+rb∑
k=0

i≤ra,j≤rb∑
i+j=k

ai (t)bj(t − iτ)δk (3)
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Property

a(δ] = δx1δ, b(δ] = x2 + x1δ
2

a(δ] + b(δ] = δx1δ + x2 + x1δ
2

a(δ]b(δ] = δx1δ(x2 + x1δ
2) = δx1δx2δ + δx1δx1δ

3

b(δ]a(δ] = (x2 + x1δ
2)δx1δ = x2δx1δ + x1δ

3x1δ
3

K(δ] satisfies the associative law and it is a non-commutative ring
(see [4]). However, it is proved that the ring K(δ] is a left Ore ring
[2, 4], which enables to define the rank of a module over this ring.
Let M denote the left module over K(δ]

M = spanK(δ]{dξ, ξ ∈ K}
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Time-delay systems under non-commutative rings

With the definition of K(δ], (1) can be rewritten in a more
compact form as follows:

ẋ = f (x , δ) +
∑m

i=1 Giui (t)
y = h(x , δ)
x(t) = ψ(t), u(t) = ϕ(t), t ∈ [−sτ, 0]

(4)

where f (x , δ) = f (x(t − iτ)) and h(x , δ) = h(x(t − iτ)) with
entries belonging to K, Gi =

∑s
j=0 g j

i δ
j with entries belonging to

K(δ]. It is assumed that rankK(δ]
∂h
∂x = p, which implies that

[h1, . . . , hp]T are independent functions of x and its backward
shifts.
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Observability and Left invertibility

Definition
System (1) is locally observable if the state x(t) can be expressed as:

x(t) = α(y(t − jτ), . . . , y (k)(t − jτ)) (5)

for j ∈ Z and k ∈ Z+. It is locally causally observable if (5) is satisfied

for j ∈ Z+ and k ∈ Z+, and locally non-causally observable if (5) is

satisfied for j ∈ Z and k ∈ Z+.

Definition
The unknown input u(t) can be estimated if it can be written as follows:

u(t) = β(y(t − jτ), . . . , y (k)(t − jτ)) (6)

for j ∈ Z and k ∈ Z+. It can be causally estimated if (6) is satisfied for

j ∈ Z+ and k ∈ Z+, and non-causally estimated if (6) is satisfied for

j ∈ Z and k ∈ Z+.
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Example

 ẋ1 = x2 + δx1, ẋ2 = δ2x2 − δx3,
ẋ3 = δx4 + δu1 + δ4u2, ẋ4 = δu2

y1 = x1, y2 = δx4

(7)

A straightforward calculation gives x1(t) = y1(t), x2(t) = ẏ1(t)− y1(t − τ)
x3(t) = ẏ1(t − τ)− y1(t − 2τ)− ÿ1(t + τ) + ẏ1(t)
x4(t) = y2(t + τ)

and  u1(t) = ÿ1(t)− ẏ1(t − τ)−
...
y 1(t + 2τ) + ÿ1(t + τ)

−y2(t + τ)− ẏ2(t − τ)
u2(t) = ẏ(t + 2τ)
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Unimodular matrix and change of coordinate

Definition
(Unimodular matrix) [3] Matrix A ∈ Kn×n(δ] is said to be
unimodular over K(δ] if it has a left inverse A−1 ∈ Kn×n(δ], such
that A−1A = In×n.

Definition
(Change of coordinate) [3] For system (1), z = φ(δ, x) ∈ Kn×1 is a
causal change of coordinate over K for (1) if there exists locally a
function φ−1 ∈ Kn×1 and some constants c1, · · · , cn ∈ N such that

diag{δci}x = φ−1(δ, z).

The change of coordinate is bicausal over K if max{ci} = 0, i.e.
x = φ−1(δ, z).

15 / 39



Unimodular matrix and change of coordinate

Definition
(Unimodular matrix) [3] Matrix A ∈ Kn×n(δ] is said to be
unimodular over K(δ] if it has a left inverse A−1 ∈ Kn×n(δ], such
that A−1A = In×n.

Definition
(Change of coordinate) [3] For system (1), z = φ(δ, x) ∈ Kn×1 is a
causal change of coordinate over K for (1) if there exists locally a
function φ−1 ∈ Kn×1 and some constants c1, · · · , cn ∈ N such that

diag{δci}x = φ−1(δ, z).

The change of coordinate is bicausal over K if max{ci} = 0, i.e.
x = φ−1(δ, z).

16 / 39



Lie derivative for TDS

Let f (x(t − jτ)) and h(x(t − jτ)) for 0 ≤ j ≤ s respectively be an
n and p dimensional vector with entries fr ∈ K for 1 ≤ r ≤ n and
hi ∈ K for 1 ≤ i ≤ p. Let

∂hi

∂x
=

[
∂hi

∂x1
, · · · , ∂hi

∂xn

]
∈ K1×n(δ] (8)

where for 1 ≤ r ≤ n:

∂hi

∂xr
=

s∑
j=0

∂hi

∂xr (t − jτ)
δj ∈ K(δ]

then the Lie derivative for TDS can be defined as follows

Lf hi =
∂hi

∂x
(f ) and LGi hi =

∂hi

∂x
(Gi )
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Relative degree for TDS

Definition
(Relative degree) System (4) has relative degree (ν1, · · · , νp) in an
open set W ⊆ Rn if, for 1 ≤ i ≤ p, the following conditions are
satisfied :

1 for all x ∈W , LGj
Lr

f hi = 0, for all 1 ≤ j ≤ m and
0 ≤ r < νi − 1;

2 there exists x ∈W such that ∃j ∈ [1,m], LGj
Lνi−1

f hi 6= 0.

If for 1 ≤ i ≤ p, (1) is satisfied for all r ≥ 0, then we set νi =∞.
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Observability indices for TDS

Let Fk := spanK(δ]

{
dh, dLf h, · · · , dLk−1

f h
}

for 1 ≤ k ≤ n,

satisfying F1 ⊂ F2 ⊂ · · · ⊂ Fn. then we define

d1 = rankK(δ]F1, and dk = rankK(δ]Fk − rankK(δ]Fk−1

for 2 ≤ k ≤ n. Let ki = card {dk ≥ i , 1 ≤ k ≤ n} then

(k1, · · · , kp) are the observability indices, and
p∑

i=1
ki = n since it is

assumed that (4) is observable with u = 0. Reordering, if
necessary, the output components of (4), such that

rankK(δ]
∂[h,Lf h,··· ,Ln−1

f h]
T

∂x

= rankK(δ]

∂
h
h1,Lf h1,··· ,L

k1−1
f h1,··· ,hp ,Lf hp ,··· ,L

kp−1

f hp

iT

∂x
= k1 + · · ·+ kp = n

19 / 39



Canonical form and causal observability

Theorem 1
For 1 ≤ i ≤ p, denote ki the observability indices and νi the relative degree index for yi of (4), and note

ρi = min {νi , ki}. Then there exists a change of coordinate φ(x, δ) ∈ Kn×1, such that (4) can be transformed
into the following form:

żi = Ai zi + Bi Vi (9)

ξ̇ = α(z, ξ, δ) + β(z, ξ, δ)u (10)

yi = Ci zi (11)

where Ai ∈ Rρi×ρi is in the Brounovsky form and

zi =
“
hi , · · · , L

ρi−1

f
hi

”T
∈ Kρi×1

, Bi = (0, · · · , 0, 1)T ∈ Rρi×1
,

Vi = L
ρi
f

hi (x, δ) +
mX

j=1

LGj
L

ρi−1

f
hi (x, δ)uj ∈ K, α ∈ K

l×1

β ∈ Kl×1(δ] with l = n −
pX

j=1

ρj , Ci = (1, 0, · · · , 0) ∈ R1×ρi

Moreover if ki < νi , one has Vi = L
ρi
f

hi = L
ki
f

hi .
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For (9), note
H(x , δ) = Ψ(x , δ) + Γ(x , δ)u (12)

with

H(x , δ) =

 h
(ρ1)
1
...

h
(ρp)
p

 ,Ψ(x , δ) =

 Lρ1

f h1
...

L
ρp

f hp


and

Γ(x , δ) =

 LG1L
ρ1−1
f h1 · · · LGmLρ1−1

f h1
...

. . .
...

LG1L
ρp−1
f hp · · · LGmL

ρp−1
f hp


where H(x , δ) ∈ Kp×1, Ψ(x , δ) ∈ Kp×1 and Γ(x , δ) ∈ Kp×m(δ].
And for (4), let denote Φ the observable space from its outputs:

Φ = {dh1, · · · , dLρ1−1
f h1, · · · , dhp, · · · , dL

ρp−1
f hp} (13)
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Main theorem

Theorem 2
For system (4) with outputs (y1, . . . , yp) and corresponding (ρ1, . . . , ρp)
with ρi = min{ki , νi} where ki and νi are respectively the associated
observability indices and the relative degree, if

rankK(δ]Φ = n

where Φ defined in (13), then there exists a change of coordinate φ(x , δ)
such that (4) can be transformed into (9-11) with dimξ = 0.
Moreover, if the change of coordinate is locally bicausal over K, then the
state x(t) of (4) is locally causally observable.

For the matrix Γ ∈ Kp×m(δ] where m ≤ p, if rankK(δ]Γ = m, then there

exists a matrix Q ∈ Kp×p(δ] such that QΓ =

[
Γ̄
0

]
where Γ̄ ∈ Km×m(δ]

has full row rank m. Moreover, if Γ̄ ∈ Km×m(δ] is also unimodular over

K(δ], then the unknown input u(t) of (4) can be causally estimated.

22 / 39



Example

 ẋ1 = −δx1 + x2, ẋ2 = −δx3 + u1

ẋ3 = δx1 + δu1 + u2, ẋ4 = −x4 + 2δx4/3
y1 = x1, y2 = x3, y3 = x4

(14)

⇒ ν1 = k1 = 2, ν2 = k2 = 1, ν3 =∞ and k3 = 1⇒ ρ1 = 2, ρ2 = 1 and
ρ3 = 1 ⇒

Φ = {dh1, dLf h1, dh2, dh3} = {dx1,−δdx1 + dx2, dx3, dx4}

⇒ rankK(δ]Φ = 4⇒

z = φ (x , δ) = (x1, x2 − δx1, x3, x4)T
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Example

Since
x = φ−1 = (z1, δz1 + z2, z3, z4, )

T

⇒ the change of coordinate is bicausal over K, thus the state of (14) is
locally causally observable:{

x1(t) = y1(t), x2(t) = y1(t − τ) + ẏ1(t)
x3(t) = y2(t), x4(t) = y3(t)

Moreover, since Γ =

(
1 0
δ 1

)
⇒ Γ−1 =

(
1 0
−δ 1

)
s.t. Γ−1Γ = I2×2

⇒ Γ is unimodular over K(δ]⇒the unknown inputs are causally
observable as well:{

u1(t) = ẏ1(t − τ) + ÿ1(t) + y2(t − τ)
u2(t) = ẏ2(t)− y1(t − τ)− ẏ1(t − 2τ)− ÿ1(t − τ)− y2(t − 2τ)
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Remark

• The condition of rankK(δ]Φ = n is sometimes hard to be
satisfied.

• When rankK(δ]Φ < n, is it still possible to estimate the state
and the unknown inputs?

In [1], a constructive algorithm to solve this problem for nonlinear
systems without delays has been proposed, which in fact can be
generalized to treat the same problem for nonlinear time-delay
systems.
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Illustrative example

Ex:  ẋ1 = −δx1 + δx4u1, ẋ2 = −δx3 + x4

ẋ3 = x2 − δx4u1, ẋ4 = u2

y1 = x1, y2 = δx1 + x3

(15)

⇒ ν1 = k1 = 1, ν2 = 1, k2 = 3 ⇒ ρ1 = ρ2 = 1 ⇒ Φ = {dx1, δdx1 + dx3}
⇒ rankK(δ]Φ = 2 < n ⇒ Theorem 2 cannot be applied.
Precisely,

ẏ1 = −δx1 + δx4u1

and ẏ2 = −δ2x1 + δ2x4δu1 + x2 − δx4u1⇒derivative impossible.

However,

ẏ2− (δ− 1)ẏ1⇒ ẏ2 − (δ − 1)ẏ1 = −δx1 + x2 ⇒x2 = ẏ2− (δ− 1)ẏ1 + δy1

Note y3 = x2 ⇒ ν3 = k3 = 2 ⇒ ρ3 = 2 ⇒
Φ = {dx1, δdx1 + dx3, dx2,−δdx3 + dx4}⇒ rankK(δ]Φ = 4
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Notation and Definition

For the case where rankK(δ]Φ = j < n, select j linearly independent
vector over R[δ] from Φ, where R[δ] means the set of polynomials of δ
with coefficients belonging to R, noted as

Φ = {dz1, · · · , dzj}

Note
L = spanR[δ] {z1, · · · , zj}

and let L(δ] be the set of polynomials of δ with coefficients over L,
define the module spanned by element of Φ over L(δ] as follows

Ω = spanL(δ] {ξ, ξ ∈ Φ} (16)

Define G = spanR[δ]{G1, . . . ,Gm} and its left annihilator

G⊥ = spanR[δ]{ω ∈ Ω | ωg = 0,∀g ∈ G}
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Theorem for general case

Theorem 3
For (4) with outputs y = (y1, · · · , yp)T and corresponding (ρ1, . . . , ρp)
with ρi = min{ki , νi} where ki and νi are respectively the associated
observability indices and the relative degree which yields (12) with
rankK(δ]Φ < n where Φ is defined in (13), there exists l new independent
outputs over K which are functions of y and its time derivatives and
backwards time shifts, if and only if rankKH = l where

H = spanR[δ]{ω ∈ G⊥ ∩ Ω | ωf /∈ L} (17)

with Ω defined in (16).
Moreover, the new outputs, noted ȳi for 1 ≤ i ≤ l , are given as follows:

ȳi = ωi f mod L

where ωi ∈ H.
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Remarks

• Roughly speaking, for

H(x , δ) = Ψ(x , δ) + Γ(x , δ)u

if there exists a 1× p vector Q with entries qi ∈ L(δ], such
that QΓ = 0 and QΨ /∈ L, then we denote

yp+1 = QΨ mod L

a new output since it is not affected by the unknown input u,
and it does not belong to the current measurable vector L.

• Theorem 3 gives a constructive way to treat the case where
rankK(δ]Φ < n.

• A ’Check-Extend’ procedure is iterated until one obtains
rankK(δ]Φ = n.
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Routine to deduce the new outputs

Input: DTS with x ∈ Rn , y ∈ Rp , u ∈ Rm

Output: Φ or failed
Initialization: Compute νi , ki , ρi , Φ, rankK(δ]Φ = j

Loop:
While j < n

Φ =
˘
dz1, · · · , dzj

¯
L = spanR[δ]

˘
z1, · · · , zj

¯
Ω = spanL(δ] {ξ, ξ ∈ Φ}
H = spanR[δ]{ω ∈ G

⊥ ∩ Ω | ωf /∈ L}
rankK(δ]H = l

If l > 0
∃l 1-forms, s.t. H = spanR[δ] {ω1, · · ·ωl}
y = y ∪ {ωi f mod L, 1 ≤ i ≤ l}
Reorder y
For each yi ∈ y , calculate νi , ki , ρi

φ = {· · · , dhi , · · · , dL
ρi
f

hi , · · · }
rankK(δ]Φ = j

Else
Return(failed)

End

Return(Φ)
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Example

 ẋ1 = −δx1 + δx4u1, ẋ2 = −δx3 + x4

ẋ3 = x2 − δx4u1, ẋ4 = u2

y1 = x1, y2 = δx1 + x3

(18)

⇒ ρ1 = ρ2 = 1 ⇒ Φ = {dx1, δdx1 + dx3} ⇒ rankK(δ]Φ = 2 < n.

G =spanR[δ]{(δx4, 0,−δx4, 0)T , (0, 0, 0, 1)T}⇒G⊥ =
spanR[δ] {dx1 + dx3, dx2}
rankK(δ]Φ = 2⇒L = spanR[δ] {x1, δx1 + x3} ⇒ Ω = spanL(δ] {dx1, dx3}

Ω ∩ G⊥ = spanL(δ] {dx1, dx3} ∩ spanR[δ] {dx1 + dx3, dx2}
= spanL(δ] {dx1 + dx3}

⇒ ∀ω ∈ Ω ∩ G⊥, ωf /∈ L since ωf = −δx1 + x2 ⇒ new output h3:

y3 = h3 = ωf mod L = x2 = δy1 + (1− δ)ẏ1 + ẏ2 (19)
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Example

⇒ ρ1 = ρ2 = 1 and ρ3 = 2 ⇒ Φ = {dx1, δdx1 + dx3, dx2,−δdx3 + dx4}
⇒ rankK(δ]Φ = 4 = n, thus we find the following change of coordinate

z = φ(x , δ) = (x1, δx1 + x3, x2,−δx3 + x4)T

it is easy to check that it is bicausal over K(δ], since

x = φ−1 =
(
z1, z3, z2 − δz1, z4 + δz2 − δ2z1

)
and one gets {

x1 = y1, x2 = y3, x3 = y2 − δy1,
x4 = −δ2y1 + δy2 + ẏ3

where the new output y3 is defined in (19).{
u1 = ẏ1

−δ3y1+δ2y2+δẏ3

u2 = −δẏ1 + ÿ3
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Remark

• It is the locally bicausal change of coordinate which makes the
state of system locally causally observable.

• It is the unimodular characteristic of Γ over K(δ] which
guarantees the causal reconstruction of unknown inputs.

The following is devoted to dealing with the non-causal case.
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Non-causal observability

∇: the forward time-shift operator, such that for i , j ∈ N,

∇f (t) = f (t + τ),∇iδj f (t) = δj∇i f (t) = f (t − (j − i)τ)

K̄: the field of functions of a finite number of variables from
{xj(t − iτ), j ∈ [1, n], i ∈ S} where S = {−s, · · · , 0, · · · , s}
K̄(δ,∇]: the set of polynomials of the following form:

a(δ,∇] = ārā∇rā + · · ·+ ā1∇+ a0(t) + a1(t)δ + · · ·+ ara (t)δra

(20)
where ai (t) and āi (t) belonging to K̄.
Usual addition + the following multiplication:

a(δ,∇]b(δ,∇] =

raX
i=0

rbX
j=0

aiδ
i bjδ

i+j +

raX
i=0

r
b̄X

j=1

aiδ
i b̄jδ

i∇j +

rāX
i=1

rbX
j=0

āi∇
i bj∇

i
δ

j +

rāX
i=1

r
b̄X

j=1

āi∇
i b̄j∇

i+j

It is clear that K ⊆ K̄ and K(δ] ⊆ K̄(δ,∇].
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Theorem

Theorem 4
For system (4) with outputs (y1, . . . , yp) and corresponding
(ρ1, . . . , ρp), if rankK(δ]Φ = n, where Φ defined in (13), then there
exists a change of coordinate z = φ(x , δ) such that (4) can be
transformed into (9-11) with dimξ = 0.
Moreover, if the change of coordinate z = φ(x , δ) is locally
bicausal over K̄, then the state x(t) of (4) is at least non-causally
observable.
For the deduced matrix Γ with rankK(δ]Γ = m, one can obtain a

matrix Γ̄ ∈ Km×m(δ] which has full row rank m. If Γ̄ is unimodular
over K̄(δ,∇], then the unknown input u(t) of (4) can be at least
non-causally estimated as well. �
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Example  ẋ1 = δx1 + x2δu1, ẋ2 = −x1 + u1 + x3δu2

ẋ3 = x4 − x1δx2δ
2u1, ẋ4 = δx1 + δ3x2

y1 = x1, y2 = δx3

(21)

⇒ ν1 = k1 = 1, ν2 = 1, k2 = 3 ⇒ ρ1 = ρ2 = 1 ⇒ Φ = {dx1, δdx3} ⇒
rankK(δ]Φ = 2 < n.

G =spanR[δ]{G1,G2}⇒G⊥ = spanR[δ] {x1δdx1 + dx3, dx4}

rankK(δ]Φ = 2 ⇒ L = spanR[δ] {x1, δx3} ⇒ Ω = spanL(δ] {dx1, δdx3} ⇒

Ω ∩ G⊥ = spanL(δ] {dx1, δdx3} ∩ spanR[δ] {x1δdx1 + dx3, dx4}
= spanL(δ]

{
δx1δ

2dx1 + δdx3

}
Since ωf = δx1δ

3x1 + δx4 /∈ L ⇒

y3 = h3 = ωf mod L = δx4 = δy1δ
2ẏ1 + ẏ2 − δy1δ

3y1 (22)
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Example

⇒ρ1 = ρ2 = 1, ν3 = k3 = 2 ⇒ ρ3 = 2 ⇒ Φ =
{
dx1, δdx3, δdx4, δ

3dx2

}
⇒ rankK(δ]Φ = 4 = n⇒L = spanR[δ]{x1, δx3, δx4, δ

3x2} ⇒ the following
change of coordinate

z = φ(x , δ) =
(
x1, δx3, δx4, δx1 + δ3x2

)T
which is not bicausal over K, but bicausal over K̄, since one has

x = φ−1 =
(
z1,−∇2z1 +∇3z4,∇z2,∇z3

)T
which gives {

x1 = y1, x2 = −∇2y1 +∇3ẏ3

x3 = ∇y2, x4 = ∇y3

where y3 is given in (22). Thus x of (21) is observable, but non causally
observable. The calculation for u is omitted (see [5] for more details).
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