On the Polyhedral Set-Invariance Conditions and Stabilization for Time-Delay Systems

Warody Lombardi Sorin Olaru and Silviu-Iulian Niculescu

Automatic Control Department and LSS Supélec, Gif-sur-Yvette, France

26 november 2010

Outline

Introduction

- Introduction
- Initial approach
- Mathematical Background

2 Classical Results Concerning Polyhedral Set Invariance

The \mathcal{D} -Invariance

- Algebraic Conditions
- \bullet The $\mathcal{D}\text{-Invariance}$ verification methods
- The \mathcal{D} -Invariance stabilization
- \mathcal{D} -invariant Sets Construction

Conclusions and Perspectives

Introduction

- 2 Classical Results Concerning Polyhedral Set Invariance
- 3 The \mathcal{D} -Invariance
- 4 Conclusions and Perspectives

- Networked control systems \rightarrow variable delay
- \bullet Constrained control \rightarrow Predictive control
- Predictive control:
 - On-line optimization procedure
 - No stability guarantee
 - Invariant set as terminal set of constraints

Initial approach

Overview (ECC 2009, IFAC TDS 2009, IFAC TDS 2010, ACC 2010, CIFA 2010):

- Constrained control for time-delay systems
- Invariant sets
 - Extended state-space framework
 - Classical stabilization techniques
- Classical unconstrained stabilization
 - Extended state-space framework Classical Lyapunov approach
 - Non-extended state-space framework Lyapunov-Krasovskii approach

Disadvantages:

- High complexity of the invariant sets in the extended state-space
- Few alternative methods in the literature:
 - Dambrine (1995)
 - Goubet-Bartholomeus (1997)
 - Hennet (1998)
 - Vassilaki (1999)

• Continuous linear system with input delay:

$$\dot{x}(t) = A_c x(t) + B_c u(t-h),$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$.

- Degree of uncertainty: $h = dT_e \epsilon$, with sampling time T_e .
- Discrete model:

$$x_{k+1} = Ax_k + Bu_{k-d} - \Delta(u_{k-d} - u_{k-d+1})$$

where u(k) is piecewise constant between simpling periods and:

$$A = e^{A_c T_e}, \quad B = \int_0^{T_e} e^{A_c (T_e - \theta)} B_c d\theta, \quad \Delta = \int_{-|\epsilon|}^0 e^{-A_c \tau} B_c d\tau$$

• $\Delta \rightarrow$ exponential function in terms of the uncertainty ϵ .

Objective:

- Robust stability of LTI systems with time-variable delay
- Design a control law which regulates the system state while robustly satisfying a set of constraints:

$$Cx_k + Du_k \leq W$$

where $C \in \mathbb{R}^{r \times n}$ and $W \in \mathbb{R}^{r}$.

• Extended model:

 $\xi_{k+1} = A_{\Delta}\xi_k + B_{\Delta}u_k$

where $A_{\Delta} \in \mathbb{R}^{n+d imes n+d}$ and $B \in \mathbb{R}^{n+d imes m}$, with:

$$\xi_{k}^{T} = \begin{bmatrix} x_{k} \\ u_{k-d} \\ \vdots \\ u_{k-1} \\ u_{k} \end{bmatrix}; A_{\Delta} = \begin{bmatrix} A & B-\Delta & \Delta & \dots & 0 \\ 0 & 0 & I_{m} & \dots & 0 \\ \vdots \\ 0 & 0 & 0 & \dots & I_{m} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}; B_{\Delta} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ I_{m} \end{bmatrix}$$

Polytopic model with n + 1 extreme realizations Δ ∈ Co {Δ₀,...,Δ_n}
Global polytopic model in an extended state space:

$$\begin{array}{rcl} \xi_{k+1} &=& A_{\Delta}\xi_{k} + B_{\Delta}u_{k} \\ A_{\Delta} &\in& \Omega \\ \Omega &=& \operatorname{Co}\{A_{\Delta_{0}}, \ A_{\Delta_{1}}, \ \dots A_{\Delta_{n}}\} \end{array}$$

• Stabilization:

- Extended state-space framework: Classical LMI-based design: u(k) = Kξ(k), where K ∈ ℝ^{m×n+d}.
- Non-extended state-space framework: Lyapunov-Krasovskii LMI-based design: u(k) = Kx(k), where $K \in \mathbb{R}^{m \times n}$.
- Invariant sets:
 - Extended state-space framework:

$$\Gamma\xi(k) + Du(k) \leq \mathbb{W}$$

where $\Gamma \in \mathbb{R}^{n+d \times w}$.

Mathematical Background - Minkowski Addition

• Minkowski addition:

For two arbitrary sets $\mathcal{A} \subseteq \mathbb{R}^n$ and $\mathcal{B} \subseteq \mathbb{R}^n$

$$\mathcal{A} \oplus \mathcal{B} := \{ x + y \mid x \in \mathcal{A}, y \in \mathcal{B} \}.$$

• Minkowski addition:

For two arbitrary sets $\mathcal{A} \subseteq \mathbb{R}^n$ and $\mathcal{B} \subseteq \mathbb{R}^n$

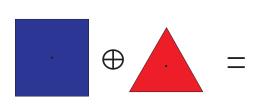
$$\mathcal{A} \oplus \mathcal{B} := \{ x + y \mid x \in \mathcal{A}, y \in \mathcal{B} \}.$$

• Example:

$$egin{aligned} {\cal A} &= \{0,1\}\,,\ {\cal B} &= \{3,4\}\,,\ {\cal A} \oplus {\cal B} &= \{3,4,5\}\,. \end{aligned}$$

Mathematical Background - Minkowski Addition

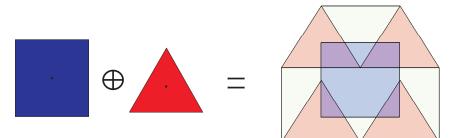
• Example:





Mathematical Background - Minkowski Addition

• Example:



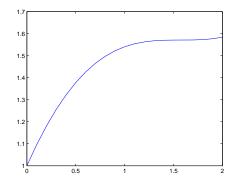
Mathematical Background - Set Dynamics and maps

• Classical maps: For $f : \mathbb{R}^n \to \mathbb{R}^n$ we have y = f(x), where $y \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$.

Mathematical Background - Set Dynamics and maps

- Classical maps: For $f : \mathbb{R}^n \to \mathbb{R}^n$ we have y = f(x), where $y \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$.
 - Example:

 $f(x) = x + \cos(x), \, \forall x \in \mathbb{R}$



Mathematical Background - Set Dynamics and maps

• Set Dynamics or Mappings: For $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ we have $\Phi(S) \subseteq \mathbb{R}^n$ and $S \subseteq \mathbb{R}^n$.

- Set Dynamics or Mappings: For $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ we have $\Phi(S) \subseteq \mathbb{R}^n$ and $S \subseteq \mathbb{R}^n$.
- Examples:
 - Set scaling: For a set $\mathcal{A} \subseteq \mathbb{R}^n$ and $\alpha \in \mathbb{R}_+$, $\alpha \mathcal{A} := \{ \alpha x \mid x \in \mathcal{A} \}.$
 - Linear set operation: For an arbitrary matrix $A \in \mathbb{R}^{n \times n}$ and a set $S \subseteq \mathbb{R}^{n}$:

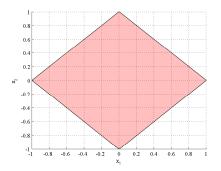
$$AS = \{ y \in \mathbb{R}^n | y = Ax, \, x \in S \}.$$

Linear set iterates:

$$\Phi(\mathcal{S},k) = A^k \mathcal{S}, \, \forall k \in \mathbb{Z}_+.$$

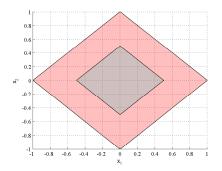
Mathematical Background - Set scaling

• Example: Set scaling. A is 1-norm unit circle in \mathbb{R}^2 and $\alpha = 0.5$. Set scaling αA :



Mathematical Background - Set scaling

• Example: Set scaling. \mathcal{A} is 1-norm unit circle in \mathbb{R}^2 and $\alpha = 0.5$. Set scaling $\alpha \mathcal{A}$:



• Example: Compute the mapping:

$$\Phi(\mathcal{S},k) = A^k \mathcal{S}, \, \forall k \in \mathbb{Z}_+,$$

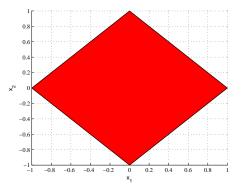
where S is a 1-norm unit circle in \mathbb{R}^2 and $A \in \mathbb{R}^{2 \times 2}$ is a contractive rotation matrix:

$$A = \rho \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix},$$

with $\rho \in \mathbb{R}_{[0,1)}$.

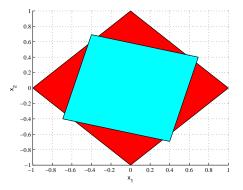
Mathematical Background - Set Dynamics

For $\theta = \frac{\pi}{6}$ and $\varepsilon = 0.8$. For k = 0, the mapping $\Phi(S, k) = S$ is:



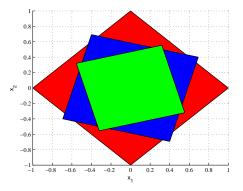
Mathematical Background - Set Dynamics

For $\theta = \frac{\pi}{6}$ and $\varepsilon = 0.8$. For k = 1, the mapping $\Phi(S, k) = AS$ is:



Mathematical Background - Set Dynamics

For $\theta = \frac{\pi}{6}$ and $\varepsilon = 0.8$. For k = 2, the mapping $\Phi(S, k) = A^2 S$ is:



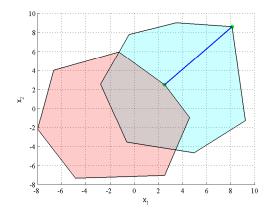
• Hausdorff Distance: Distance between two sets $\mathcal{A} \subseteq \mathbb{R}^n$ and $\mathcal{B} \subseteq \mathbb{R}^n$ given by:

$$d_{H}(\mathcal{A},\mathcal{B}) = \max\left(\max_{x\in\mathcal{A}}\min_{y\in\mathcal{B}}d(x,y), \max_{x\in\mathcal{B}}\min_{y\in\mathcal{A}}d(x,y)\right),$$

where d(x, y) is the Euclidean distance between the points x and y in \mathbb{R}^n . In practical, this distance can be obtained by solving a QP problem, in terms of distance between hyperplanes and extreme points.

Mathematical Background - Hausdorff Distance

Example: Find the Haudorff distance between the two sets:



 $d_{H} = 8.26$

Introduction

2 Classical Results Concerning Polyhedral Set Invariance

3) The \mathcal{D} -Invariance

4 Conclusions and Perspectives

Definition (Set invariance)

Let $\varepsilon \in \mathbb{R}_{[0,1)}$. A set $\mathcal{P} \subseteq \mathbb{R}^n$ is called *contractive* with respect to system

$$x(k+1) = f(x(k))$$

if

$$f(\mathcal{P}) \subseteq \varepsilon \mathcal{P}.$$

For $\varepsilon = 1$, \mathcal{P} is called an *invariant* set with respect to the dynamics.

Classical Results Concerning Polyhedral Set Invariance

Proposition (Bitsoris 1988)

The convex polyhedral set:

$$\mathcal{P}=\left\{x\in\mathbb{R}^n|Fx\leq w\right\},\,$$

with $F \in \mathbb{R}^{r \times n}$, $w \in \mathbb{R}^r$, is an invariant set with respect to

$$x(k+1)=Ax(k),$$

with $A \in \mathbb{R}^{n \times n}$, if there exists a matrix $H \in \mathbb{R}^{r \times r}$ with nonnegative elements such that:

$$FA = HF$$

and

$$Hw \leq w$$
.

Definition ((Blanchini 1995) Minkowski functions)

Consider a convex and compact polyhedral set containing the origin:

$$\mathcal{P}=\left\{x\in\mathbb{R}^n|Fx\leq\mathbb{1}\right\},\,$$

with $F \in \mathbb{R}^{r \times n}$, $w \in \mathbb{R}^r$. The polyhedral function associated to \mathcal{P} is called a Minkowski function:

$$V(x) = \max_{j \in \mathbb{Z}_{[1,r]}} \{ \max \{ \{ (Fx)_j \}, 0 \} \}.$$

where $\{(Fx)_j\}$ denotes the j^{th} element of Fx. This function can be seen as a vector infinity-norm (Kiendl et al. 1992):

$$V(x) = \left\| \max\left\{ Fx, 0\right\} \right\|_{\infty}.$$

Remark

The Minkowski function of a set $\mathcal P$ can be used as polyhedral Lyapunov candidate.

Remark

Consider $\varepsilon \in \mathbb{R}_{[0,1)}$. One of the statements of the Lyapunov stability theorem is:

$$V(x(k+1)) - \varepsilon V(x(k)) \leq 0$$

If $\varepsilon = 1$ the function V(x) is called a **weak Lyapunov function**. Although the existence of a weak Lyapunov function does not imply global asymptotic stability, it induces invariant sets.

1 Introduction

2 Classical Results Concerning Polyhedral Set Invariance

3 The \mathcal{D} -Invariance

4 Conclusions and Perspectives

• Delay-difference equation of the form:

$$x(k+1) = \sum_{i=0}^{d} A_i x(k-i),$$

where $x(k) \in \mathbb{R}^n$ is the state vector at the time $k \in \mathbb{Z}_+$. $A_i \in \mathbb{R}^{n \times n}$, for all $i \in \mathbb{Z}_{[0,d]}$. Initial conditions satisfy $x(-i) \in \mathbb{R}^n$, for all $i \in \mathbb{Z}_{[0,d]}$.

Definition ($\mathcal{D}(elay)$ Invariance)

Let $\varepsilon \in \mathbb{R}_{[0,1)}$. A set $\mathcal{P} \subseteq \mathbb{R}^n$ containing the origin is called \mathcal{D} -contractive set with respect to the system if:

$$\bigoplus_{i=0}^d A_i \mathcal{P} \subseteq \varepsilon \mathcal{P}.$$

When $\varepsilon = 1$, \mathcal{P} is called a \mathcal{D} -invariant set with respect to the dynamics.

The \mathcal{D} -Invariance

• Some properties:

э

- Some properties:
 - If $\mathcal{P} \in \mathbb{R}^n$ is \mathcal{D} -invariant then $\alpha \mathcal{P}$ is \mathcal{D} -invariant for any $\alpha \in \mathbb{R}_{>0}$.

The \mathcal{D} -Invariance

• Some properties:

- If $\mathcal{P} \in \mathbb{R}^n$ is \mathcal{D} -invariant then $\alpha \mathcal{P}$ is \mathcal{D} -invariant for any $\alpha \in \mathbb{R}_{>0}$.
- Let A, B ⊆ ℝⁿ be two D-invariant sets for a given dynamics. Then A ∩ B is a D-invariant set for the same dynamical system.

• Some properties:

- If $\mathcal{P} \in \mathbb{R}^n$ is \mathcal{D} -invariant then $\alpha \mathcal{P}$ is \mathcal{D} -invariant for any $\alpha \in \mathbb{R}_{>0}$.
- Let A, B ⊆ ℝⁿ be two D-invariant sets for a given dynamics. Then A ∩ B is a D-invariant set for the same dynamical system.
- Let $\mathcal{P} \subseteq \mathbb{R}^n$ be a convex set containing the origin. If \mathcal{P} is \mathcal{D} -invariant with respect to:

$$x(k+1) = \sum_{i=0}^{d} A_i x(k-i),$$

then $\ensuremath{\mathcal{P}}$ is positive invariant with respect to the time invariant linear dynamics:

$$egin{aligned} & x(k+1) = A_0 x(k); \ & x(k+1) = A_1 x(k); \ & \vdots \ & x(k+1) = A_d x(k). \end{aligned}$$

Equivalently, $A_0 \mathcal{P} \subseteq \mathcal{P}$, $A_1 \mathcal{P} \subseteq \mathcal{P}$, ..., $A_d \mathcal{P} \subseteq \mathcal{P}$.

- Some properties:
 - Given a \mathcal{D} -invariant set $\mathcal{P} \in \mathbb{R}^n$ for the system:

$$x(k+1) = A_0 x(k) + \cdots + A_d x(k-d)$$

then \mathcal{P} is \mathcal{D} -invariant for:

$$x(k+1) = A_d x(k) + \cdots + A_0 x(k-d).$$

- Some properties:
 - Given a \mathcal{D} -invariant set $\mathcal{P} \in \mathbb{R}^n$ for the system:

$$x(k+1) = A_0 x(k) + \cdots + A_d x(k-d)$$

then \mathcal{P} is \mathcal{D} -invariant for:

$$x(k+1) = A_d x(k) + \cdots + A_0 x(k-d).$$

• Given a \mathcal{D} -invariant set $\mathcal{P} \in \mathbb{R}^n$ for the system:

$$x(k+1) = A_0 x(k) + A_1 x(k-1),$$

then \mathcal{P} is \mathcal{D} -invariant for:

$$x(k+1) = A_0x(k) + A_1x(k-2);$$

:
 $x(k+1) = A_0x(k) + A_1x(k-d).$

Example:

- Set \mathcal{P} : ∞ -norm unit circle.
- Delay-difference equation of the form:

$$x(k+1) = \sum_{i=0}^{d} A_i x(k-i),$$

where n = 2 and d = 1, with the matrices:

$$A_0 = \begin{bmatrix} 0.2 & -0.34 \\ 0.34 & 0.2 \end{bmatrix}; A_1 = \begin{bmatrix} 0.24 & -0.17 \\ 0.17 & 0.24 \end{bmatrix}.$$

Lombardi, Olaru, Niculescu (Supélec/LSS)

Example:

- Set \mathcal{P} : ∞ -norm unit circle.
- Delay-difference equation of the form:

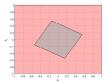
$$x(k+1) = \sum_{i=0}^{d} A_i x(k-i),$$

where n = 2 and d = 1, with the matrices:

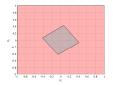
$$A_0 = \begin{bmatrix} 0.2 & -0.34 \\ 0.34 & 0.2 \end{bmatrix}; A_1 = \begin{bmatrix} 0.24 & -0.17 \\ 0.17 & 0.24 \end{bmatrix}.$$

Is the set \mathcal{P} a \mathcal{D} -invariant set with respect to the dynamics?

\mathcal{P} (red) and $A_0\mathcal{P}$ (black)

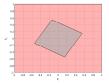


\mathcal{P} (red) and $A_1\mathcal{P}$ (black)

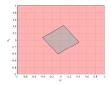


э

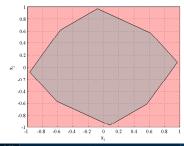
$\mathcal P$ (red) and $A_0\mathcal P$ (black)



\mathcal{P} (red) and $A_1\mathcal{P}$ (black)



 $A_0\mathcal{P}\oplus A_1\mathcal{P}\subseteq \mathcal{P}$



Lombardi, Olaru, Niculescu (Supélec/LSS)

Time-delay systems

э

Theorem (Hennet and Tarbouriech (1998))

Let \mathcal{P} be a polyhedral set in \mathbb{R}^n containing the origin in its interior, i.e. there exists a $F \in \mathbb{R}^{r \times n}$ such that:

$$\mathcal{P} = \{ x \in \mathbb{R}^n \mid Fx \le \mathbb{1} \}$$

is \mathcal{D} -contractive with respect to the system if and only if there exist the matrices $H_i \in \mathbb{R}^{r \times r}$ for $i \in \mathbb{Z}_{[0,d]}$ with non-negative elements such that:

$$FA_i = H_iF$$

and

$$\left(\sum_{i=0}^d H_i\right)\mathbb{1} \leq \varepsilon \mathbb{1}.$$

When $\varepsilon = 1$, \mathcal{P} is called a \mathcal{D} -invariant set.

Definition (\mathcal{D} -Invariance)

Consider the sets $\mathcal{P}_i \subseteq \mathbb{R}^n$, for $i \in \mathbb{Z}_{[0,d]}$. The sets $\mathcal{P}_i \subseteq \mathbb{R}^n$ containing the origin are called \mathcal{D} -invariant sets with respect to the system if:

$$A_{0}\mathcal{P}_{0} \oplus A_{1}\mathcal{P}_{1} \oplus \cdots \oplus A_{d}\mathcal{P}_{d} \subseteq \mathcal{P}_{0};$$

$$A_{0}\mathcal{P}_{d} \oplus A_{1}\mathcal{P}_{0} \oplus \cdots \oplus A_{d}\mathcal{P}_{d-1} \subseteq \mathcal{P}_{d};$$

$$\vdots$$

$$A_{0}\mathcal{P}_{1} \oplus A_{1}\mathcal{P}_{2} \oplus \cdots \oplus A_{d}\mathcal{P}_{0} \subseteq \mathcal{P}_{1}.$$

Theorem

Let \mathcal{P}_i be polyhedral sets in \mathbb{R}^n containing the origin in its interior, for $i \in \mathbb{Z}_{[0,d]}$, i.e. there exist $F_i \in \mathbb{R}^{r \times n}$ such that:

$$\mathcal{P}_i = \{ x \in \mathbb{R}^n \mid F_i x \le 1 \}$$

are \mathcal{D} -invariant with respect to the system if and only if there exist the matrices $H_{ij} \in \mathbb{R}^{r \times r}$ for $i, j \in \mathbb{Z}_{[0,d]}$ with non-negative elements such that:

$$F_i A_j = H_{ij} F_i$$

and

$$\left(\sum_{j=0}^d H_{0j}\right)\mathbb{1} \leq \mathbb{1}; \quad \cdots; \quad \left(\sum_{j=0}^d H_{dj}\right)\mathbb{1} \leq \mathbb{1}.$$

$\mathcal{D}\text{-}\mathsf{Invariance}$ Algebraic Conditions

Theorem (Lyapunov-Razumikhin Theorem)

Consider the Lyapunov-Razumikhin function $V : \mathbb{R}^n \to \mathbb{R}_+$ such that there exist the radially unbounded functions $\phi(\cdot), \omega(\cdot) : \mathbb{R}_+ \to \mathbb{R}_+$ continuous and non-decreasing with $\phi(0) = \omega(0) = 0$ and $\varepsilon \in \mathbb{R}_{[0,1)}$. Denote:

$$\mathbf{x}(k)^ op = egin{bmatrix} x(k)^ op & x(k-1)^ op & \dots & x(k-d)^ op \end{bmatrix}^ op \in (\mathbb{R}^n)^{d+1}$$

Consider the function $ilde{V}: (\mathbb{R}^n)^{d+1} \to \mathbb{R}^n$ with :

$$\tilde{V}(\mathbf{x}(k)) \triangleq \max_{i \in \mathbb{Z}_{[0,d]}} \left\{ V(x(k-i)) \right\}.$$

If the following hold:

(i)
$$\phi(||x||) \leq V(x) \leq \omega(||x||), \forall x \in \mathbb{R}^n$$
,
(ii) $V(x(k+1)) - \varepsilon \tilde{V}(\mathbf{x}(k)) \leq 0, \forall k \in \mathbb{Z}_+, \forall \mathbf{x}(0) \in (\mathbb{R}^n)^{d+1}$,

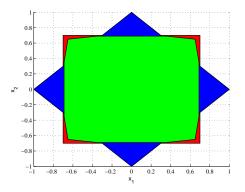
then the system is globally asymptotically stable.

• Example:

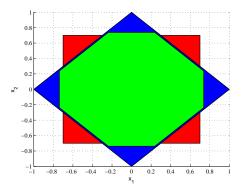
Consider the sets $\mathcal{P}_0, \mathcal{P}_0$ are ∞ -norm unit circles and $\mathcal{P}_1, \mathcal{P}_3$ are 1-norm unit circles. Consider also the system matrices:

$$A_{0} = \begin{bmatrix} 0 & 0.25 \\ 0.25 & 0 \\ 0 & 0.25 \\ 0.25 & 0 \end{bmatrix} \quad A_{1} = \begin{bmatrix} 0.04 & 0 \\ 0 & 0.3 \\ 0 & 0.3 \\ 0 & 0.4 \end{bmatrix}$$
$$A_{2} = \begin{bmatrix} 0.04 & 0 \\ 0 & 0.3 \\ 0 & 0.04 \end{bmatrix}$$

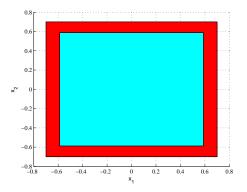
$\mathcal{A}_0\mathcal{P}_0\oplus\mathcal{A}_1\mathcal{P}_1\oplus\mathcal{A}_2\mathcal{P}_2\oplus\mathcal{A}_3\mathcal{P}_3\subseteq\mathcal{P}_0$



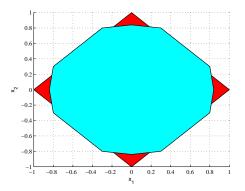
$\mathcal{A}_0\mathcal{P}_1\oplus\mathcal{A}_1\mathcal{P}_2\oplus\mathcal{A}_2\mathcal{P}_3\oplus\mathcal{A}_3\mathcal{P}_0\subseteq\mathcal{P}_1$



$\mathcal{A}_0\mathcal{P}_0\oplus\mathcal{A}_1\mathcal{P}_0\oplus\mathcal{A}_2\mathcal{P}_0\oplus\mathcal{A}_3\mathcal{P}_0\subseteq\mathcal{P}_0$



$\textit{A}_{0}\mathcal{P}_{1} \oplus \textit{A}_{1}\mathcal{P}_{1} \oplus \textit{A}_{2}\mathcal{P}_{1} \oplus \textit{A}_{3}\mathcal{P}_{1} \nsubseteq \mathcal{P}_{0}$



Minkowski addition based tests

- \bullet Verify the inclusion by the direct application of the $\mathcal{D}\mbox{-invariance}$ definition
- Based on vertex enumeration
- Computationally expensive
- Intractable for high order Euclidean space dimensions
- Feasibility based tests
 - $\bullet~\mathcal{D}\text{-invariant}$ algebraic conditions
 - Half-space representation
 - LP feasibility problem

The \mathcal{D} -Invariance verification methods

• *D*-invariance feasibility test:

Theorem

The polyhedral set $\mathcal{P} = \{x \in \mathbb{R}^n \mid Fx \leq 1\}$ is \mathcal{D} -invariant with respect to the system $x(k+1) = \sum_{i=0}^{d} A_i x(k-i)$, if there exists the vector $\overline{h} \in \mathbb{R}^{dr^2}$ with nonnegative elements obtained by:

$$\begin{array}{rcl} \min & \varepsilon \\ \text{ubject to:} & \begin{cases} A_{eq}\bar{h} = b_{eq} \\ A_{in}\bar{h} \leq b_{in} \\ \bar{h} \geq 0 \\ 0 \leq \varepsilon \leq 1 \end{cases} \end{array}$$

If $\varepsilon < 1$ the set \mathcal{P} is \mathcal{D} -contractive.

Proof: Taking the previous result:

$$FA_i = H_iF$$
, and $\left(\sum_{i=0}^d H_i\right)\mathbb{1} \le \varepsilon\mathbb{1}$.

Proof:

The matrices H_i are present in both equalities and inequalities:

$$FA_i = H_iF$$
, and $\left(\sum_{i=0}^d H_i\right)\mathbb{1} \le \varepsilon\mathbb{1}.$

Proof:

The matrices H_i are present in both equalities and inequalities:

$$FA_{i} = H_{i}F, \text{ and } \left(\sum_{i=0}^{d} H_{i}\right)\mathbb{1} \leq \varepsilon\mathbb{1}.$$
$$\begin{cases} A_{eq}\overline{h} = b_{eq} \\ A_{in}\overline{h} \leq b_{in} \\ \overline{h} \geq 0 \\ 0 \leq \varepsilon \leq 1 \end{cases}$$

where \overline{h} is a vector formed by the elements of H_i , for $i \in \mathbb{Z}_{[0,d]}$ and ε .

The \mathcal{D} -Invariance stabilization

• Discrete time-delay system:

$$x(k+1) = \sum_{i=0}^{d} A_i x(k-i) + \sum_{i=0}^{d} B_i u(k-i),$$

where $x(k) \in \mathbb{R}^n$ is the state vector, $u(k) \in \mathbb{R}^r$ is the control input at the time $k \in \mathbb{Z}_+$, $A_i \in \mathbb{R}^{n \times n}$, $B_i \in \mathbb{R}^{n \times m}$, for all $i \in \mathbb{Z}_{[0,d]}$.

• State feedback control law:

$$u(k)=Kx(k),$$

with $K \in \mathbb{R}^{m \times n}$.

• Closed loop:

$$x(k+1) = \sum_{i=0}^{d} (A_i + B_i K_i) x(k-i).$$

Proposition

The polyhedral set of constraints $\mathcal{P} = \{x \in \mathbb{R}^n \mid Fx \leq w\}$, with $F \in \mathbb{R}^{r \times n}$, is \mathcal{D} -invariant with respect to the system

$$x(k+1) = \sum_{i=0}^{d} A_i x(k-i) + \sum_{i=0}^{d} B_i u(k-i),$$

and the control law $u(k) = K_i x(k)$ is a solution to the stabilization of the system if and only if there exist the matrices $H_i \in \mathbb{R}^{r \times r}$ for $i \in \mathbb{Z}_{[0,d]}$, $K \in \mathbb{R}^{m \times n}$ and $\varepsilon \in \mathbb{R}_{[0,1)}$ such that:

$$F(A_i+B_iK_i)=H_iF,$$

$$\left(\sum_{i=0}^d H_i\right) w \leq \varepsilon w.$$

Proof: The same principle of the \mathcal{D} -invariant verification.

• How to find a \mathcal{D} -invariant set with respect to a given dynamics?

• How to find a \mathcal{D} -invariant set with respect to a given dynamics?

• Hypothesis: This set do exist

• How to find a \mathcal{D} -invariant set with respect to a given dynamics?

- Hypothesis: This set do exist
- Iterative method

\bullet How to find a $\mathcal{D}\text{-invariant}$ set with respect to a given dynamics?

- Hypothesis: This set do exist
- Iterative method
- Hausdorff distance as measure

\bullet How to find a $\mathcal D\text{-invariant}$ set with respect to a given dynamics?

- Hypothesis: This set do exist
- Iterative method
- Hausdorff distance as measure
- Is this set the biggest one?

• How to find a \mathcal{D} -invariant set with respect to a given dynamics?

- Hypothesis: This set do exist
- Iterative method
- Hausdorff distance as measure
- Is this set the biggest one?
- Delay-difference equation:

$$x(k+1) = \sum_{i=0}^{d} A_i x(k-i),$$

• How to find a \mathcal{D} -invariant set with respect to a given dynamics?

- Hypothesis: This set do exist
- Iterative method
- Hausdorff distance as measure
- Is this set the biggest one?
- Delay-difference equation:

$$x(k+1) = \sum_{i=0}^{d} A_i x(k-i),$$

Set of state constraints D ⊆ ℝⁿ, i.e. x(k) ∈ D for k ∈ ℝ₊. The initial conditions satisfy x(-i) ∈ D, for all i ∈ Z_[0,d].

• How to find a \mathcal{D} -invariant set with respect to a given dynamics?

- Hypothesis: This set do exist
- Iterative method
- Hausdorff distance as measure
- Is this set the biggest one?
- Delay-difference equation:

$$x(k+1) = \sum_{i=0}^{d} A_i x(k-i),$$

- Set of state constraints D ⊆ ℝⁿ, i.e. x(k) ∈ D for k ∈ ℝ₊. The initial conditions satisfy x(-i) ∈ D, for all i ∈ Z_[0,d].
- Obtain an invariant set *P* ⊆ ℝⁿ with respect to the dynamics such that *P* ⊆ *D*.

• Mappings:

Set dynamics in direct time:

$$\Phi: \quad ComC(\mathbb{R}^n) \to ComC(\mathbb{R}^n)$$
$$\Phi(\mathcal{D}) = \bigoplus_{i=0}^d A_i \mathcal{D}$$

- \rightarrow Non-monotone mapping
- \rightarrow Non-monotone Hausdorff distance

• Mappings:

Set dynamics in direct time:

$$\Phi: \quad ComC(\mathbb{R}^n) \to ComC(\mathbb{R}^n)$$
$$\Phi(\mathcal{D}) = \bigoplus_{i=0}^d A_i \mathcal{D}$$

- \rightarrow Non-monotone mapping
- \rightarrow Non-monotone Hausdorff distance
- 2 Convex hull between the set dynamics and \mathcal{D} :

$$egin{aligned} \Psi : & \textit{ComC}(\mathbb{R}^n)
ightarrow \textit{ComC}(\mathbb{R}^n) \ \Psi(\mathcal{D}) &= \textit{Co}(\mathcal{D}, \bigoplus_{i=0}^d A_i \mathcal{D}) = \textit{Co}(\mathcal{D}, \Phi(\mathcal{D})) \end{aligned}$$

where $ComC(\mathbb{R}^n)$ denotes compact and convex sets in \mathbb{R}^n and $Co(\mathcal{A}, \mathcal{B})$ is the convex hull between \mathcal{A} and \mathcal{B} , subsets of \mathbb{R}^n .

- \rightarrow Monotone mapping
- \rightarrow Monotone Hausdorff distance

Lombardi, Olaru, Niculescu (Supélec/LSS)

• k set iterates can be defined as:

$$\Phi^k(\mathcal{D}) = \Phi(\Phi^{k-1}(\mathcal{D})), k \ge 0 \text{ with } \Phi^0(\mathcal{D}) = \mathcal{D},$$

 $\Psi^k(\mathcal{D}) = \Psi(\Psi^{k-1}(\mathcal{D})), k \ge 0 \text{ with } \Psi^0(\mathcal{D}) = \mathcal{D}.$

• Basic iterative procedure to obtain \mathcal{P} , a \mathcal{D} -invariant set:

1)
$$i = 1;$$

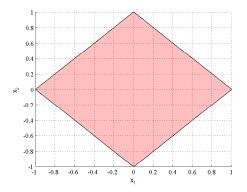
- 2) Calculate: $P_i = \Psi^i(\mathcal{D})$;
- 3) Calculate the Hausdorff distance: $d_H(P_i, P_{i-1})$;
- 4) If d_H = 0, stop. Otherwise do i = i + 1 and go to step 2. The obtained set P is a D-invariant set.
- 5) Find α such that $\alpha \mathcal{P} \subseteq \mathcal{D}$.

• Example:

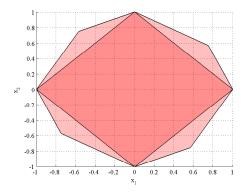
 \mathcal{D} is a 1-norm unit circle in \mathbb{R}^2 and $A_i \in \mathbb{R}^{2 \times 2}$, with i = 0, 1, are contractive rotation matrices.

For A_0 , $\rho = 0.5$ and $\theta = \frac{\pi}{6}$. For A_1 , $\rho = 0.45$ and $\theta = \frac{\pi}{4}$.

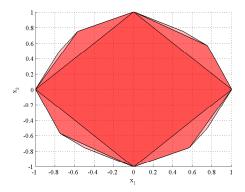
Set iterate $\Psi^0(\mathcal{D})$:



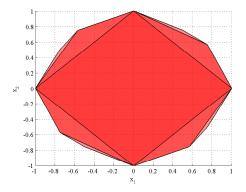
Set iterate $\Psi^1(\mathcal{D})$:



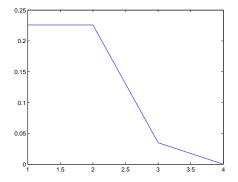
Set iterate $\Psi^2(\mathcal{D})$:



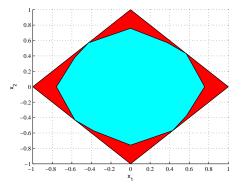
Set iterate $\Psi^3(\mathcal{D})$:



Hausdorff distance $d_H(P_i, P_{i-1})$:



• Find α such that $\alpha \mathcal{D} \subseteq \mathcal{P}$: $\alpha = 0.7579$.



- Is this set the maximal one? (Probably not)
- Find the maximal one
- Sketch of the algorithm:
 - 1) Take a point $p \in \mathcal{D}$ but $p \notin \mathcal{P}$;
 - 2) Test its invariance ;
 - 3) If it is invariant make $Co(p, \mathcal{P})$ and go to 1, calculate the d_H between the sets; otherwise take another p closer to \mathcal{P} and go to 2;
 - 4) The algorithm stops when d_H is smaller than a given precision.

Introduction

2 Classical Results Concerning Polyhedral Set Invariance

3 The \mathcal{D} -Invariance

4 Conclusions and Perspectives

Conclusions:

- Constrained states for time-delay systems
- \bullet Invariant sets in the non augmented state-space $\rightarrow \mathcal{D}\text{-invariance}$
- Mathematical background
- Classical results on polyhedral set invariance
- The *D*-invariance
 - Minkowski addition based conditions
 - Algebraic based conditions
 - Stabilization
 - $\bullet~\mathcal{D}\text{-invariant}$ sets algorithmic construction

Perspectives:

- Is there a delay-dependent approach?
- Practical application (position control of a DC motor)

Thanks a lot! Questions and comments...