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Application of Distributed delay

∙ Dead-time compensators

∙ Finite-spectrum assignment (Manitius & Olbrot,1979 Watanabe,1986)

∙ The modified Smith predictor (Watanabe & Ito 1981 and Raton,1996)

∙ H∞ control of dead-time systems (Zhong, 2003)

∙ Continuous time dead beat control

∙ ...
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Introduction

Banach Algebra A (Callier & Desoer, 1978)

f(t) =

⎧

⎨

⎩

fa(t) + fpa(t), t ≥ 0

0, t < 0

fa(⋅) ∈ L1(R+), fpa(t) =
∞
∑

n=0

fn�(t− tn)

Norm over A :

∥f∥A = ∥fa∥L1 +

∞
∑

n=0

∣fn∣
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Definition

A convolution system

y(t) = (f ∗ u)(t) =

∫ t

0
f(�)u(t− �)d�

is said to be BIBO stable if f ∈ A
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Example

+
−

c p
r(t) u(t) y(t)

The plant

p̂ =
e−s

s− 1

Using the compensator

ĉ(s) =
2e

1 + 21−e−(s−1)

s−1

we obtain

ŷ(s) =
2ee−s

s+ 1
ˆr(s)

A realization of ĉ(s) is

u(t) = 2er(t)− 2

∫ 1

0
e�u(t− �)d� − 2ey(t)

5



How to implementation ĉ(s) = 2e

1+2 1−e−(s−1)

s−1

?

+
p

r(t) u(t) y(t)
ĉ(s)

e−1

e−1 e−s

1
s−1

1
s−1

+

+

−

−

Stability problem ?
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u(t) = 2er(t)− 2

∫ 1

0
e�u(t− �)d� − 2ey(t)

Approximation of the distributed time operator : Newton-Cotes approximation

∫ 1

0
e�u(t− �)d� ≈

1

�

[

1

2
u(t) +

1

2
eu(t− 1) +

�−1
∑

i=1

e
i
�u(t−

i

�
)

]
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In frequency domain

1− e−(s−1)

s− 1
v.s.

1

�
(
1

2
+

1

2
ee−s +

�−1
∑

i=1

e
i
� e

− i
�
s
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Problems :

1. Approximation of the distributed time operator

y(t) =

∫ #2

#1

fI#1,#2(�)u(t− �) d�

2. Implementation for control problems in continuous time
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Some results in the literature
– Insert a low pass filter (Mirkin,2003)

Adding the filter f
s+f

to the convolution and using the Newton-Cotes approximation

we can obtain
⎧

⎨

⎩

ż(t) = −fz(t) + 2f
{

er(t)− 1
�

[

1
2u(t) +

1
2eu(t− 1) +

∑�−1
i=1 e

i
�u(t− i

�
)
]

− 2ey(t)
}

u(t) = z(t)
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– Using series and power series expand (Zhong, 2004)

vf (t) =

∫ ℎ

0
e�u(t− �)d� ≈

N−1
∑

i=0

e
ℎ
N u(t− i

ℎ

N
) ∗ p(t)

where p(t) = 1(t)− 1(t− ℎ
N
)

The transfer function form u to vf is

Zf (s) =
1− e−s ℎ

N

s

N−1
∑

i=0

ei
ℎ
N
(s−1)

The hold filter can be expanded as the following series of � :

1− e−s ℎ
N

s
=

1− e−
ℎ
N
(s+�)

s+ �
+

1− e−
ℎ
N
(s+�) − ℎ

N
(s+ �)e

ℎ
N
(s+�)

(s+ �)2
�+ ⋅ ⋅ ⋅

For guarantying the static gain let

1− e−s ℎ
N

s
≈

1− e−
ℎ
N
(s+�)

s+ �

ℎ
N
�

1− e−� ℎ
N
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Distributed delay
K (Ia,b) as the set of real valued functions g(⋅) of the form

g(t) =

⎧

⎨

⎩

gIa,b(t), t ∈ Ia,b

0, elsewhere

where

gIa,b(t) =
∑

i≥0

∑

j≥0

cij t
j e�it

Definition : A distributed delay is a causal convolution system of the form

y(t) = (f ∗ u)(t) =

∫ t

0
f(�)u(t− �) d�

where kernel f lies in K (I#1,#2), 0 ≤ #1 < #2.
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Laplace transform :

ŷ(s) = f̂(s)û(s), f̂(s) =

∫ #2

#1

fI#1,#2
(�) e−s� d�

where f̂ is an entire function

Example :

f(t) =

⎧

⎨

⎩

et , t ∈ [0, 1]

0 , elsewhere

f̂(s) =
1− e−(s−1)

s− 1
, f̂(1) = 1
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Elementary distributed delay

��(t) =

⎧

⎨

⎩

e� t , t ∈ [0, #]

0 , elsewhere

Its Laplace transform is

�̂�(s) =
1− e−(s−�)#

s− �

which is an entire function even in s = � where �̂�(�) = #
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The kth derivative �̂
(k)
� (s) of �̂�(s) is

�̂
(k)
� (s) =

∫ #

0
(−�)ke−(s−�)�d�

�̂
(k)
� (s) is still distributed delay

Lemma
Any element in distributed delay can be decomposed into a finite sum of Laplace

transforms of elementary distributed delays and its successive derivatives.
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Implementation of �̂�(s) =
1−e−(s−�)#

s−�

e−#se�#

1
s−�

û ŷ+

−

– For Re� < 0 : stable implementation.

– For Re� ≥ 0 : Numerical instability. How to approximate ? → using elements

distributed delay in “stable form” :
∑

i≥0

∑

j≥0 cij t
j e�it (�i < 0)
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Approximation of distributed delay

Classes of approximation

∙ Lumped systems

∙ Lumped delayed systems

∙ Distributed delay in “stable form” : Re� < 0
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∙ Approximation in graph topology over A .

fapp ∈ B(��, ") =
{

��,app(t) ∈ A , ∥��,app(t)− ��(t)∥A
≤ "
}

Since �� ∈ L1, we approximate it over L1.

∙ Approximation by lumped systems

∙ Approximation by distributed delay in “stable form”
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Lemma

Any distributed delay with kernel ��(⋅) in “unstable form”(Re� ≥ 0) can be

approximated by distributed delays with kernels in “stable form” (Re� < 0) for the

graph topology

The Laplace transform of ��,app(t) is

�̂�,app(s) =
n
∑

k=1

�k�̂k(s)

�̂k(s) in “stable form” (Re� < 0), �k is constant.
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Brief Proof and Procedure
The kernel is

��(t) =

⎧

⎨

⎩

e� t , t ∈ [0, #]

0 , elsewhere

∙ Let t = −�−1ln�, we have

 �(�) = (��)−1��(−�
−1ln�) � ∈ [e−�#, 1]

∙ Change the variable � = �−e−�#

1−e−�# , we have

Φ�(�) = ��(−�
−1ln((1− e−�#)�) + e−�#)

� ∈ [0, 1].
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∙ Using Bernstein polynomials

Φ�,app(�) =
n
∑

k=0

Cn
kΦ�

(

k

n

)

�k(1− �)n−k

∙ Change the variable back from � to t : � = e−�t−e−�#

1−e−�# we have

��,n(t) =
1

(1− e−�#)n

n
∑

k=0

Ck
nΦ�

(

k

n

)

(e−�t − e−�#)k(1− e−�t)n−k

��,n(t) uniformly converges to ��(⋅) in L1.
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with Laplace transform we have

�̂�,app(s) =

n
∑

k=1


k�̂k(s)

�̂k(s) in Ks(I0,#).(Lu et al., 2010)

Implementation the distributed delay

+

+
+

yu
�̂1(s)

�̂2(s)

�̂n(s)


1


2


n

+

−

1
s+�i

e−i�se−i� �̂i(s)

22



In time domain �1(t) and �1,app(t)
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The relationship between error and approximation order (�1,app(t)) :

t = −�−1ln�

��,n(t) =
1

(1− e−�#)n

n
∑

k=0

Ck
nΦ�

(

k

n

)

(e−�t − e−�#)k(1− e−�t)n−k
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Frquency properties �1(t) and �1,app(t) :
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Application for stabilization

u1

+
−

e1 e2y1

u2

y2
+

+
c p

p =
n

d
, c =

nc
dc

The equations describing the closed-loop system are
⎡

⎣

y1

y2

⎤

⎦ = H(p, c)

⎡

⎣

u1

u2

⎤

⎦

where

H(p, c) =

⎡

⎣

c/(1 + pc) −pc/(1 + pc)

pc/(1 + pc) p/(1 + pc)

⎤

⎦
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– Let p be a distribution.

– (n, d) : coprime factorization of p over A

– Compensator c with coprime factorization (nc, dc)

Sufficient and necessary condition for stabilization :
The pair(p, c) is stable if and only if

Φ = nnc + ddc

where Φ is a unit of A .
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Example

The plant

p̂ =
e−s

s− 1

A comprim factorization n̂ = e−s

s+1 , d̂ = s−1
s+1

n̂2e + d̂

(

1 + 2
1− e−(s−1)

s− 1

)

= 1

A stabilizing compensator is ĉ(s) = 2e

1+2 1−e−(s−1)

s−1

. A realization is

u(t) = 2er(t)− 2

∫ 1

0
e�u(t− �)d� − 2ey(t)
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Theorem

The plant of the system is p(s) = n̂

d̂
, the compensator of the system is ĉ(s) = n̂c

d̂c
. Using

approximation for n̂c(s), d̂c(s), the system is stable if

max("n, "d) <

∥

∥

∥

∥

∥

∥

n̂

d̂

∥

∥

∥

∥

∥

∥

−1

Â

where "n̂ = n̂app − n̂, "
d̂
= d̂app − d̂
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Stabilization example :

p(s) =
e−s

s− 1

a stabilizing compensator is ĉ(s) = 2e

1+2 1−e−(s−1)

s−1

.

– "n = 0, "d = "

– d̂ = s−1
s+1

– " < 1
3
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Time response :
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Conclusion

Contribution

1. General methodology to realize an approximation for distributed delay

2. Approximation in L1

3. The kernel approximation

4. Graph topology over a general convolution algebra
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Perspective

1. Minimize the order of the approximation

2. Effective calculation of the approximation

3. Other control problem, finite spectrum assignment

4. Generalization for distributed parameter systems
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